Course Code: bscmlpython
Duration: 28 hours
Prerequisites:

There are no specific requirements needed to attend this course.

Overview:

The aim of this course is to provide a basic proficiency in applying Machine Learning methods in practice. Through the use of the Python programming language and its various libraries, and based on a multitude of practical examples this course teaches how to use the most important building blocks of Machine Learning, how to make data modeling decisions, interpret the outputs of the algorithms and validate the results.

Our goal is to give you the skills to understand and use the most fundamental tools from the Machine Learning toolbox confidently and avoid the common pitfalls of Data Sciences applications.

Course Outline:

Introduction to Python

Introduction 

  • Installing Python 
  • Numbers 
  • Strings 
  • Slicing up Strings 
  • Lists 
  • Installing PyCharm 

Conditional Statements 

  • if elif else 

Iterations 

  • for 
  • Range and While 
  • Comments and Break 
  • Continue 

Functions 

  • Functions 
  • Return Values 
  • Default Values for Arguments 
  • Variable Scope 
  • Keyword Arguments 
  • Flexible Number of Arguments 
  • Unpacking Arguments 
  • My trip to Walmart and Sets 
  • Dictionary 
  • Modules 

Playing with Requests and Files 

  • Download an Image from the Web 
  • How to Read and Write Files 
  • Downloading Files from the Web 

Exceptions  

Object Oriented Programs 

  • Classes and Objects 
  • init 
  • Class vs Instance Variables 
  • Inheritance 
  • Multiple Inheritance 
  • threading 

Playing around with Python 

  • Unpack List or Tuples 
  • Zip (and yeast infection story) 
  • Lamdba 
  • Min, Max, and Sorting Dictionaries 
  • Pillow 
  • Cropping Images 
  • Combine Images Together 
  • Getting Individual Channels 
  • Awesome Merge Effect 
  • Basic Transformations 
  • Modes and Filters 
  • struct 
  • map 
  • Bitwise Operators 
  • Finding Largest or Smallest Items 
  • Dictionary Calculations 
  • Finding Most Frequent Items 
  • Dictionary Multiple Key Sort 
  • Sorting Custom Objects 

Add Ons: 

  • Database Connectivity and Querying for MySQL 
  • Quick look into Regular Expressions 
  • Playing around with REST API 

Writing a Web Crawler

Machine Learning Concepts

Introduction to Applied Machine Learning

  • Statistical learning vs. Machine learning
  • Iteration and evaluation
  • Bias-Variance trade-off

Machine Learning with Python

  • Choice of libraries
  • Add-on tools

Regression

  • Linear regression
  • Generalizations and Nonlinearity
  • Exercises

Classification

  • Bayesian refresher
  • Naive Bayes
  • Logistic regression
  • K-Nearest neighbors
  • Exercises

Cross-validation and Resampling

  • Cross-validation approaches
  • Bootstrap
  • Exercises

Unsupervised Learning

  • K-means clustering
  • Examples
  • Challenges of unsupervised learning and beyond K-means