Course Code: nue_lbg
Duration: 14 hours
Prerequisites:

Knowledge/appreciation of machine learning, systems architecutre and programming languages are desirable

Overview:

This classroom based training session will contain presentations and computer based examples and case study exercises to undertake with relevant neural and deep network libraries

Course Outline:
  1. Overview of neural networks and deep learning
    • The concept of Machine Learning (ML)
    • Why we need neural networks and deep learning?
    • Selecting networks to different problems and data types
    • Learning and validating neural networks
    • Comparing logistic regression to neural network
  2. Neural network
    • Biological inspirations to Neural network
    • Neural Networks– Neuron, Perceptron and MLP(Multilayer Perceptron model)
    • Learning MLP – backpropagation algorithm
    • Activation functions – linear, sigmoid, Tanh, Softmax
    • Loss functions appropriate to forecasting and classification
    • Parameters – learning rate, regularization, momentum
    • Building Neural Networks in Python
    • Evaluating performance of neural networks in Python
  3. Basics of Deep Networks
    • What is deep learning?
    • Architecture of Deep Networks– Parameters, Layers, Activation Functions, Loss functions, Solvers
    • Restricted Boltzman Machines (RBMs)
    • Autoencoders
  4. Deep Networks Architectures
    • Deep Belief Networks(DBN) – architecture, application
    • Autoencoders
    • Restricted Boltzmann Machines
    • Convolutional Neural Network
    • Recursive Neural Network
    • Recurrent Neural Network
  5. Overview of libraries and interfaces available in Python
    • Caffee
    • Theano
    • Tensorflow
    • Keras
    • Mxnet
    • Choosing appropriate library to problem
  6. Building deep networks in Python
    • Choosing appropriate architecture to given problem
    • Hybrid deep networks
    • Learning network – appropriate library, architecture definition
    • Tuning network – initialization, activation functions, loss functions, optimization method
    • Avoiding overfitting – detecting overfitting problems in deep networks, regularization
    • Evaluating deep networks
  7. Case studies in Python
    • Image recognition – CNN
    • Detecting anomalies with Autoencoders
    • Forecasting time series with RNN
    • Dimensionality reduction with Autoencoder
    • Classification with RBM
Sites Published:

United Arab Emirates - Neural computing – Data science

Qatar - Neural computing – Data science

Egypt - Neural computing – Data science

Saudi Arabia - Neural computing – Data science

South Africa - Neural computing – Data science

Brasil - Neural computing – Data science

Canada - Neural computing – Data science

中国 - Neural computing – Data science

香港 - Neural computing – Data science

澳門 - Neural computing – Data science

台灣 - Neural computing – Data science

USA - Neural computing – Data science

Österreich - Neural computing – Data science

Schweiz - Neural computing – Data science

Deutschland - Neural computing – Data science

Czech Republic - Neural computing – Data science

Denmark - Neural computing – Data science

Estonia - Neural computing – Data science

Finland - Neural computing – Data science

Greece - Neural computing – Data science

Magyarország - Neural computing – Data science

Ireland - Neural computing – Data science

Luxembourg - Neural computing – Data science

Latvia - Neural computing – Data science

España - Computación Neuronal - Ciencia de Datos

Italia - Neural computing – Data science

Lithuania - Neural computing – Data science

Nederland - Neural computing – Data science

Norway - Neural computing – Data science

Portugal - Neural computing – Data science

România - Neural computing – Data science

Sverige - Neural computing – Data science

Türkiye - Neural computing – Data science

Malta - Neural computing – Data science

Belgique - Neural computing – Data science

France - Neural computing – Data science

日本 - Neural computing – Data science

Australia - Neural computing – Data science

Malaysia - Neural computing – Data science

New Zealand - Neural computing – Data science

Philippines - Neural computing – Data science

Singapore - Neural computing – Data science

Thailand - Neural computing – Data science

Vietnam - Neural computing – Data science

India - Neural computing – Data science

Argentina - Computación Neuronal - Ciencia de Datos

Chile - Computación Neuronal - Ciencia de Datos

Costa Rica - Computación Neuronal - Ciencia de Datos

Ecuador - Computación Neuronal - Ciencia de Datos

Guatemala - Computación Neuronal - Ciencia de Datos

Colombia - Computación Neuronal - Ciencia de Datos

México - Computación Neuronal - Ciencia de Datos

Panama - Computación Neuronal - Ciencia de Datos

Peru - Computación Neuronal - Ciencia de Datos

Uruguay - Computación Neuronal - Ciencia de Datos

Venezuela - Computación Neuronal - Ciencia de Datos

Polska - Neural computing – Data science

United Kingdom - Neural computing – Data science

South Korea - Neural computing – Data science

Pakistan - Neural computing – Data science

Sri Lanka - Neural computing – Data science

Bulgaria - Neural computing – Data science

Bolivia - Computación Neuronal - Ciencia de Datos

Indonesia - Neural computing – Data science

Kazakhstan - Neural computing – Data science

Moldova - Neural computing – Data science

Morocco - Neural computing – Data science

Tunisia - Neural computing – Data science

Kuwait - Neural computing – Data science

Oman - Neural computing – Data science

Slovakia - Neural computing – Data science

Kenya - Neural computing – Data science

Nigeria - Neural computing – Data science

Botswana - Neural computing – Data science

Slovenia - Neural computing – Data science

Croatia - Neural computing – Data science

Serbia - Neural computing – Data science

Bhutan - Neural computing – Data science

Nepal - Neural computing – Data science

Uzbekistan - Neural computing – Data science