Knowledge/appreciation of machine learning, systems architecutre and programming languages are desirable
This classroom based training session will contain presentations and computer based examples and case study exercises to undertake with relevant neural and deep network libraries
- Overview of neural networks and deep learning
- The concept of Machine Learning (ML)
- Why we need neural networks and deep learning?
- Selecting networks to different problems and data types
- Learning and validating neural networks
- Comparing logistic regression to neural network
- Neural network
- Biological inspirations to Neural network
- Neural Networks– Neuron, Perceptron and MLP(Multilayer Perceptron model)
- Learning MLP – backpropagation algorithm
- Activation functions – linear, sigmoid, Tanh, Softmax
- Loss functions appropriate to forecasting and classification
- Parameters – learning rate, regularization, momentum
- Building Neural Networks in Python
- Evaluating performance of neural networks in Python
- Basics of Deep Networks
- What is deep learning?
- Architecture of Deep Networks– Parameters, Layers, Activation Functions, Loss functions, Solvers
- Restricted Boltzman Machines (RBMs)
- Autoencoders
- Deep Networks Architectures
- Deep Belief Networks(DBN) – architecture, application
- Autoencoders
- Restricted Boltzmann Machines
- Convolutional Neural Network
- Recursive Neural Network
- Recurrent Neural Network
- Overview of libraries and interfaces available in Python
- Caffee
- Theano
- Tensorflow
- Keras
- Mxnet
- Choosing appropriate library to problem
- Building deep networks in Python
- Choosing appropriate architecture to given problem
- Hybrid deep networks
- Learning network – appropriate library, architecture definition
- Tuning network – initialization, activation functions, loss functions, optimization method
- Avoiding overfitting – detecting overfitting problems in deep networks, regularization
- Evaluating deep networks
- Case studies in Python
- Image recognition – CNN
- Detecting anomalies with Autoencoders
- Forecasting time series with RNN
- Dimensionality reduction with Autoencoder
- Classification with RBM
United Arab Emirates - Neural computing – Data science
Qatar - Neural computing – Data science
Egypt - Neural computing – Data science
Saudi Arabia - Neural computing – Data science
South Africa - Neural computing – Data science
Brasil - Neural computing – Data science
Canada - Neural computing – Data science
中国 - Neural computing – Data science
香港 - Neural computing – Data science
澳門 - Neural computing – Data science
台灣 - Neural computing – Data science
USA - Neural computing – Data science
Österreich - Neural computing – Data science
Schweiz - Neural computing – Data science
Deutschland - Neural computing – Data science
Czech Republic - Neural computing – Data science
Denmark - Neural computing – Data science
Estonia - Neural computing – Data science
Finland - Neural computing – Data science
Greece - Neural computing – Data science
Magyarország - Neural computing – Data science
Ireland - Neural computing – Data science
Luxembourg - Neural computing – Data science
Latvia - Neural computing – Data science
España - Computación Neuronal - Ciencia de Datos
Italia - Neural computing – Data science
Lithuania - Neural computing – Data science
Nederland - Neural computing – Data science
Norway - Neural computing – Data science
Portugal - Neural computing – Data science
România - Neural computing – Data science
Sverige - Neural computing – Data science
Türkiye - Neural computing – Data science
Malta - Neural computing – Data science
Belgique - Neural computing – Data science
France - Neural computing – Data science
日本 - Neural computing – Data science
Australia - Neural computing – Data science
Malaysia - Neural computing – Data science
New Zealand - Neural computing – Data science
Philippines - Neural computing – Data science
Singapore - Neural computing – Data science
Thailand - Neural computing – Data science
Vietnam - Neural computing – Data science
India - Neural computing – Data science
Argentina - Computación Neuronal - Ciencia de Datos
Chile - Computación Neuronal - Ciencia de Datos
Costa Rica - Computación Neuronal - Ciencia de Datos
Ecuador - Computación Neuronal - Ciencia de Datos
Guatemala - Computación Neuronal - Ciencia de Datos
Colombia - Computación Neuronal - Ciencia de Datos
México - Computación Neuronal - Ciencia de Datos
Panama - Computación Neuronal - Ciencia de Datos
Peru - Computación Neuronal - Ciencia de Datos
Uruguay - Computación Neuronal - Ciencia de Datos
Venezuela - Computación Neuronal - Ciencia de Datos
Polska - Neural computing – Data science
United Kingdom - Neural computing – Data science
South Korea - Neural computing – Data science
Pakistan - Neural computing – Data science
Sri Lanka - Neural computing – Data science
Bulgaria - Neural computing – Data science
Bolivia - Computación Neuronal - Ciencia de Datos
Indonesia - Neural computing – Data science
Kazakhstan - Neural computing – Data science
Moldova - Neural computing – Data science
Morocco - Neural computing – Data science
Tunisia - Neural computing – Data science
Kuwait - Neural computing – Data science
Oman - Neural computing – Data science
Slovakia - Neural computing – Data science
Kenya - Neural computing – Data science
Nigeria - Neural computing – Data science
Botswana - Neural computing – Data science
Slovenia - Neural computing – Data science
Croatia - Neural computing – Data science
Serbia - Neural computing – Data science
Bhutan - Neural computing – Data science