Course Code: kubeflow
Duration: 35 hours
Prerequisites:
  • Familiarity with Python syntax 
  • Experience with Tensorflow, PyTorch, or other machine learning framework
  • An AWS account with necessary resources

Audience

  • Developers
  • Data scientists
Overview:

Kubeflow is a toolkit for making Machine Learning (ML) on Kubernetes easy, portable and scalable. AWS EKS (Elastic Kubernetes Service) is an Amazon managed service for running the Kubernetes on AWS.

This instructor-led, live training (online or onsite) is aimed at developers and data scientists who wish to build, deploy, and manage machine learning workflows on Kubernetes.

By the end of this training, participants will be able to:

  • Install and configure Kubeflow on premise and in the cloud using AWS EKS (Elastic Kubernetes Service).
  • Build, deploy, and manage ML workflows based on Docker containers and Kubernetes.
  • Run entire machine learning pipelines on diverse architectures and cloud environments.
  • Using Kubeflow to spawn and manage Jupyter notebooks.
  • Build ML training, hyperparameter tuning, and serving workloads across multiple platforms.

Format of the Course

  • Interactive lecture and discussion.
  • Lots of exercises and practice.
  • Hands-on implementation in a live-lab environment.

Course Customization Options

  • To request a customized training for this course, please contact us to arrange.
Course Outline:

Introduction

  • Introduction to Kubernetes
  • Overview of Kubeflow Features and Architecture
  • Kubeflow on AWS vs on-premise vs on other public cloud providers

Setting up a Cluster using AWS EKS

Setting up an On-Premise Cluster using Microk8s

Deploying Kubernetes using a GitOps Approach

Data Storage Approaches

Creating a Kubeflow Pipeline

Triggering a Pipeline

Defining Output Artifacts

Storing Metadata for Datasets and Models

Hyperparameter Tuning with TensorFlow

Visualizing and Analyzing the Results

Multi-GPU Training

Creating an Inference Server for Deploying ML Models

Working with JupyterHub

Networking and Load Balancing

Auto Scaling a Kubernetes Cluster

Troubleshooting

Summary and Conclusion

Sites Published:

United Arab Emirates - Kubeflow

Qatar - Kubeflow

Egypt - Kubeflow

Saudi Arabia - Kubeflow

South Africa - Kubeflow

Brasil - Kubeflow

Canada - Kubeflow

中国 - Kubeflow

香港 - Kubeflow

澳門 - Kubeflow

台灣 - Kubeflow

USA - Kubeflow

Österreich - Kubeflow

Schweiz - Kubeflow

Deutschland - Kubeflow

Czech Republic - Kubeflow

Denmark - Kubeflow

Estonia - Kubeflow

Finland - Kubeflow

Greece - Kubeflow

Magyarország - Kubeflow

Ireland - Kubeflow

Luxembourg - Kubeflow

Latvia - Kubeflow

España - Kubeflow

Italia - Kubeflow

Lithuania - Kubeflow

Nederland - Kubeflow

Norway - Kubeflow

Portugal - Kubeflow

România - Kubeflow

Sverige - Kubeflow

Türkiye - Kubeflow

Malta - Kubeflow

Belgique - Kubeflow

France - Kubeflow

日本 - Kubeflow

Australia - Kubeflow

Malaysia - Kubeflow

New Zealand - Kubeflow

Philippines - Kubeflow

Singapore - Kubeflow

Thailand - Kubeflow

Vietnam - Kubeflow

India - Kubeflow

Argentina - Kubeflow

Chile - Kubeflow

Costa Rica - Kubeflow

Ecuador - Kubeflow

Guatemala - Kubeflow

Colombia - Kubeflow

México - Kubeflow

Panama - Kubeflow

Peru - Kubeflow

Uruguay - Kubeflow

Venezuela - Kubeflow

Polska - Kubeflow

United Kingdom - Kubeflow

South Korea - Kubeflow

Pakistan - Kubeflow

Sri Lanka - Kubeflow

Bulgaria - Kubeflow

Bolivia - Kubeflow

Indonesia - Kubeflow

Kazakhstan - Kubeflow

Moldova - Kubeflow

Morocco - Kubeflow

Tunisia - Kubeflow

Kuwait - Kubeflow

Oman - Kubeflow

Slovakia - Kubeflow

Kenya - Kubeflow

Nigeria - Kubeflow

Botswana - Kubeflow

Slovenia - Kubeflow

Croatia - Kubeflow

Serbia - Kubeflow

Bhutan - Kubeflow

Nepal - Kubeflow

Uzbekistan - Kubeflow