- C or C++ programming experience
- A basic understanding of Python
- A general understanding of embedded systems
Audience
- Developers
- Programmers
- Data scientists with an interest in embedded systems development
TensorFlow Lite for Microcontrollers is a port of TensorFlow Lite designed to run machine learning models on microcontrollers and other devices with limited memory.
This instructor-led, live training (online or onsite) is aimed at engineers who wish to write, load and run machine learning models on very small embedded devices.
By the end of this training, participants will be able to:
- Install TensorFlow Lite.
- Load machine learning models onto an embedded device to enable it to detect speech, classify images, etc.
- Add AI to hardware devices without relying on network connectivity.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Introduction
- Microcontroller vs Microprocessor
- Microcontrollers designed for machine learning tasks
Overview of TensorFlow Lite Features
- On-device machine learning inference
- Solving network latency
- Solving power constraints
- Preserving privacy
Constraints of a Microcontroller
- Energy consumption and size
- Processing power, memory, and storage
- Limited operations
Getting Started
- Preparing the development environment
- Running a simple Hello World on the Microcontroller
Creating an Audio Detection System
- Obtaining a TensorFlow Model
- Converting the Model to a TensorFlow Lite FlatBuffer
Serializing the Code
- Converting the FlatBuffer to a C byte array
Working with Microcontroller'ss C++ Libraries
- Coding the microcontroller
- Collecting data
- Running inference on the controller
Verifying the Results
- Running a unit test to see the end-to-end workflow
Creating an Image Detection System
- Classifying physical objects from image data
- Creating TensorFlow model from scratch
Deploying an AI-enabled Device
- Running inference on a microcontroller in the field
Troubleshooting
Summary and Conclusion
United Arab Emirates - Tensorflow Lite for Microcontrollers
Qatar - Tensorflow Lite for Microcontrollers
Egypt - Tensorflow Lite for Microcontrollers
Saudi Arabia - Tensorflow Lite for Microcontrollers
South Africa - Tensorflow Lite for Microcontrollers
Brasil - Tensorflow Lite for Microcontrollers
Canada - Tensorflow Lite for Microcontrollers
中国 - Tensorflow Lite for Microcontrollers
香港 - Tensorflow Lite for Microcontrollers
澳門 - Tensorflow Lite for Microcontrollers
台灣 - Tensorflow Lite for Microcontrollers
USA - Tensorflow Lite for Microcontrollers
Österreich - Tensorflow Lite for Microcontrollers
Schweiz - Tensorflow Lite for Microcontrollers
Deutschland - Tensorflow Lite for Microcontrollers
Czech Republic - Tensorflow Lite for Microcontrollers
Denmark - Tensorflow Lite for Microcontrollers
Estonia - Tensorflow Lite for Microcontrollers
Finland - Tensorflow Lite for Microcontrollers
Greece - Tensorflow Lite for Microcontrollers
Magyarország - Tensorflow Lite for Microcontrollers
Ireland - Tensorflow Lite for Microcontrollers
Luxembourg - Tensorflow Lite for Microcontrollers
Latvia - Tensorflow Lite for Microcontrollers
España - Tensorflow Lite for Microcontrollers
Italia - Tensorflow Lite for Microcontrollers
Lithuania - Tensorflow Lite for Microcontrollers
Nederland - Tensorflow Lite for Microcontrollers
Norway - Tensorflow Lite for Microcontrollers
Portugal - Tensorflow Lite for Microcontrollers
România - Tensorflow Lite for Microcontrollers
Sverige - Tensorflow Lite for Microcontrollers
Türkiye - Tensorflow Lite for Microcontrollers
Malta - Tensorflow Lite for Microcontrollers
Belgique - Tensorflow Lite for Microcontrollers
France - Tensorflow Lite for Microcontrollers
日本 - Tensorflow Lite for Microcontrollers
Australia - Tensorflow Lite for Microcontrollers
Malaysia - Tensorflow Lite for Microcontrollers
New Zealand - Tensorflow Lite for Microcontrollers
Philippines - Tensorflow Lite for Microcontrollers
Singapore - Tensorflow Lite for Microcontrollers
Thailand - Tensorflow Lite for Microcontrollers
Vietnam - Tensorflow Lite for Microcontrollers
India - Tensorflow Lite for Microcontrollers
Argentina - Tensorflow Lite for Microcontrollers
Chile - Tensorflow Lite for Microcontrollers
Costa Rica - Tensorflow Lite for Microcontrollers
Ecuador - Tensorflow Lite for Microcontrollers
Guatemala - Tensorflow Lite for Microcontrollers
Colombia - Tensorflow Lite for Microcontrollers
México - Tensorflow Lite for Microcontrollers
Panama - Tensorflow Lite for Microcontrollers
Peru - Tensorflow Lite for Microcontrollers
Uruguay - Tensorflow Lite for Microcontrollers
Venezuela - Tensorflow Lite for Microcontrollers
Polska - Tensorflow Lite for Microcontrollers
United Kingdom - Tensorflow Lite for Microcontrollers
South Korea - Tensorflow Lite for Microcontrollers
Pakistan - Tensorflow Lite for Microcontrollers
Sri Lanka - Tensorflow Lite for Microcontrollers
Bulgaria - Tensorflow Lite for Microcontrollers
Bolivia - Tensorflow Lite for Microcontrollers
Indonesia - Tensorflow Lite for Microcontrollers
Kazakhstan - Tensorflow Lite for Microcontrollers
Moldova - Tensorflow Lite for Microcontrollers
Morocco - Tensorflow Lite for Microcontrollers
Tunisia - Tensorflow Lite for Microcontrollers
Kuwait - Tensorflow Lite for Microcontrollers
Oman - Tensorflow Lite for Microcontrollers
Slovakia - Tensorflow Lite for Microcontrollers
Kenya - Tensorflow Lite for Microcontrollers
Nigeria - Tensorflow Lite for Microcontrollers
Botswana - Tensorflow Lite for Microcontrollers
Slovenia - Tensorflow Lite for Microcontrollers
Croatia - Tensorflow Lite for Microcontrollers
Serbia - Tensorflow Lite for Microcontrollers
Bhutan - Tensorflow Lite for Microcontrollers