Course Code:
machinemlops
Duration:
28 hours
Prerequisites:
- Experience with Python
Overview:
By the end of this training, participants will be able to:
- Install and configure Kubeflow on premise and in the cloud.
- Build, deploy, and manage ML workflows based on Docker containers and Kubernetes.
- Run entire machine learning pipelines on diverse architectures and cloud environments.
- Using Kubeflow to spawn and manage Jupyter notebooks.
- Build ML training, hyperparameter tuning, and serving workloads across multiple platforms.
- Plan, build, and deploy machine learning models in KNIME.
- Implement end to end data science projects.
- Make data driven decisions for operations.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Outline:
Introduction
Overview of Kubeflow Features and Components
- Containers, manifests, etc.
Overview of a Machine Learning Pipeline
- Training, testing, tuning, deploying, etc.
Deploying Kubeflow to a Kubernetes Cluster
- Preparing the execution environment (training cluster, production cluster, etc.)
- Downloading, installing and customizing.
Running a Machine Learning Pipeline on Kubernetes
- Building a TensorFlow pipeline.
- Building a PyTorch pipleline.
Visualizing the Results
- Exporting and visualizing pipeline metrics
Customizing the Execution Environment
- Customizing the stack for diverse infrastructures
- Upgrading a Kubeflow deployment
Running Kubeflow on Public Clouds
- AWS, Microsoft Azure, Google Cloud Platform
Managing Production Workflows
- Running with GitOps methodology
- Scheduling jobs
- Spawning Jupyter notebooks
Troubleshooting
Getting Started with Knime
- What is KNIME?
- KNIME Analytics
- KNIME Server
Machine Learning
- Computational learning theory
- Computer algorithms for computational experience
Preparing the Development Environment
- Installing and configuring KNIME
KNIME Nodes
- Adding nodes
- Accessing and reading data
- Merging, splitting, and filtering data
- Grouping and pivoting data
- Cleaning data
Modeling
- Creating workflows
- Importing data
- Preparing data
- Visualizing data
- Creating a decision tree model
- Working with regression models
- Predicting data
- Comparing and matching data
Learning Techniques
- Working with random forest techniques
- Using polynomial regression
- Assigning classes
- Evaluating models
Summary and Conclusion