- Basic understanding of data concepts
Audience
- Data analysts
- Database administrators
- IT professionals
Dataprep is a smart data service that facilitates the visual exploration, cleansing, and organization of both structured and unstructured data, getting it ready for analysis, reporting, and utilization in machine learning applications.
This instructor-led, live training (online or onsite) is aimed at beginner to intermediate-level IT professionals who wish to gain the knowledge and practical skills required to effectively prepare data for analysis, ensuring accuracy, consistency, and reliability in diverse datasets.
By the end of this training, participants will be able to:
- Gain a thorough understanding of data preparation's significance in ensuring high-quality, reliable data for analysis and modeling purposes.
- Acquire hands-on proficiency in data collection, cleaning, transformation, and integration techniques using real-world datasets.
- Develop the ability to identify and address data-related challenges, discrepancies, and inconsistencies effectively.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Introduction
- Understanding the importance of data preparation in analytics and machine learning
- Data preparation pipeline and its role in the data lifecycle
- Exploring common challenges in raw data and the impact on analysis
Data Collection and Acquisition
- Sources of data: databases, APIs, spreadsheets, text files, and more
- Techniques for collecting data and ensuring data quality during collection
- Collecting data from various sources
Data Cleaning Techniques
- Identifying and handling missing values, outliers, and inconsistencies
- Dealing with duplicates and errors in the dataset
- Cleaning real-world datasets
Data Transformation and Standardization
- Data normalization and standardization techniques
- Categorical data handling: encoding, binning, and feature engineering
- Transforming raw data into usable formats
Data Integration and Aggregation
- Merging and combining datasets from different sources
- Resolving data conflicts and aligning data types
- Techniques for data aggregation and consolidation
Data Quality Assurance
- Methods for ensuring data quality and integrity throughout the process
- Implementing quality checks and validation procedures
- Case studies and practical applications of data quality assurance
Dimensionality Reduction and Feature Selection
- Understanding the need for dimensionality reduction
- Techniques like PCA, feature selection, and reduction strategies
- Implementing dimensionality reduction techniques
Summary and Next Steps
United Arab Emirates - Dataprep Fundamentals
Saudi Arabia - Dataprep Fundamentals
South Africa - Dataprep Fundamentals
Brasil - Dataprep Fundamentals
Canada - Dataprep Fundamentals
Österreich - Dataprep Fundamentals
Schweiz - Dataprep Fundamentals
Deutschland - Dataprep Fundamentals
Czech Republic - Dataprep Fundamentals
Denmark - Dataprep Fundamentals
Estonia - Dataprep Fundamentals
Finland - Dataprep Fundamentals
Greece - Dataprep Fundamentals
Magyarország - Dataprep Fundamentals
Ireland - Dataprep Fundamentals
Luxembourg - Dataprep Fundamentals
Latvia - Dataprep Fundamentals
España - Dataprep Fundamentals
Italia - Dataprep Fundamentals
Lithuania - Dataprep Fundamentals
Nederland - Dataprep Fundamentals
Norway - Dataprep Fundamentals
Portugal - Dataprep Fundamentals
România - Dataprep Fundamentals
Sverige - Dataprep Fundamentals
Türkiye - Dataprep Fundamentals
Belgique - Dataprep Fundamentals
France - Dataprep Fundamentals
Australia - Dataprep Fundamentals
Malaysia - Dataprep Fundamentals
New Zealand - Dataprep Fundamentals
Philippines - Dataprep Fundamentals
Singapore - Dataprep Fundamentals
Thailand - Dataprep Fundamentals
Vietnam - Dataprep Fundamentals
Argentina - Dataprep Fundamentals
Costa Rica - Dataprep Fundamentals
Ecuador - Dataprep Fundamentals
Guatemala - Dataprep Fundamentals
Colombia - Dataprep Fundamentals
México - Dataprep Fundamentals
Panama - Dataprep Fundamentals
Uruguay - Dataprep Fundamentals
Venezuela - Dataprep Fundamentals
Polska - Dataprep Fundamentals
United Kingdom - Dataprep Fundamentals
South Korea - Dataprep Fundamentals
Pakistan - Dataprep Fundamentals
Sri Lanka - Dataprep Fundamentals
Bulgaria - Dataprep Fundamentals
Bolivia - Dataprep Fundamentals
Indonesia - Dataprep Fundamentals
Kazakhstan - Dataprep Fundamentals
Moldova - Dataprep Fundamentals
Morocco - Dataprep Fundamentals
Tunisia - Dataprep Fundamentals
Kuwait - Dataprep Fundamentals
Slovakia - Dataprep Fundamentals
Nigeria - Dataprep Fundamentals
Botswana - Dataprep Fundamentals
Slovenia - Dataprep Fundamentals
Croatia - Dataprep Fundamentals
Serbia - Dataprep Fundamentals