Course Code: dataprep
Duration: 14 hours
Prerequisites:
  • Basic understanding of data concepts

Audience

  • Data analysts
  • Database administrators
  • IT professionals
Overview:

Dataprep is a smart data service that facilitates the visual exploration, cleansing, and organization of both structured and unstructured data, getting it ready for analysis, reporting, and utilization in machine learning applications.

This instructor-led, live training (online or onsite) is aimed at beginner to intermediate-level IT professionals who wish to gain the knowledge and practical skills required to effectively prepare data for analysis, ensuring accuracy, consistency, and reliability in diverse datasets.

By the end of this training, participants will be able to:

  • Gain a thorough understanding of data preparation's significance in ensuring high-quality, reliable data for analysis and modeling purposes.
  • Acquire hands-on proficiency in data collection, cleaning, transformation, and integration techniques using real-world datasets.
  • Develop the ability to identify and address data-related challenges, discrepancies, and inconsistencies effectively.

Format of the Course

  • Interactive lecture and discussion.
  • Lots of exercises and practice.
  • Hands-on implementation in a live-lab environment.

Course Customization Options

  • To request a customized training for this course, please contact us to arrange.
Course Outline:

Introduction

  • Understanding the importance of data preparation in analytics and machine learning
  • Data preparation pipeline and its role in the data lifecycle
  • Exploring common challenges in raw data and the impact on analysis

Data Collection and Acquisition

  • Sources of data: databases, APIs, spreadsheets, text files, and more
  • Techniques for collecting data and ensuring data quality during collection
  • Collecting data from various sources

Data Cleaning Techniques

  • Identifying and handling missing values, outliers, and inconsistencies
  • Dealing with duplicates and errors in the dataset
  • Cleaning real-world datasets

Data Transformation and Standardization

  • Data normalization and standardization techniques
  • Categorical data handling: encoding, binning, and feature engineering
  • Transforming raw data into usable formats

Data Integration and Aggregation

  • Merging and combining datasets from different sources
  • Resolving data conflicts and aligning data types
  • Techniques for data aggregation and consolidation

Data Quality Assurance

  • Methods for ensuring data quality and integrity throughout the process
  • Implementing quality checks and validation procedures
  • Case studies and practical applications of data quality assurance

Dimensionality Reduction and Feature Selection

  • Understanding the need for dimensionality reduction
  • Techniques like PCA, feature selection, and reduction strategies
  • Implementing dimensionality reduction techniques

Summary and Next Steps

Sites Published:

United Arab Emirates - Dataprep Fundamentals

Qatar - Dataprep Fundamentals

Egypt - Dataprep Fundamentals

Saudi Arabia - Dataprep Fundamentals

South Africa - Dataprep Fundamentals

Brasil - Dataprep Fundamentals

Canada - Dataprep Fundamentals

中国 - Dataprep Fundamentals

香港 - Dataprep Fundamentals

澳門 - Dataprep Fundamentals

台灣 - Dataprep Fundamentals

USA - Dataprep Fundamentals

Österreich - Dataprep Fundamentals

Schweiz - Dataprep Fundamentals

Deutschland - Dataprep Fundamentals

Czech Republic - Dataprep Fundamentals

Denmark - Dataprep Fundamentals

Estonia - Dataprep Fundamentals

Finland - Dataprep Fundamentals

Greece - Dataprep Fundamentals

Magyarország - Dataprep Fundamentals

Ireland - Dataprep Fundamentals

Luxembourg - Dataprep Fundamentals

Latvia - Dataprep Fundamentals

España - Dataprep Fundamentals

Italia - Dataprep Fundamentals

Lithuania - Dataprep Fundamentals

Nederland - Dataprep Fundamentals

Norway - Dataprep Fundamentals

Portugal - Dataprep Fundamentals

România - Dataprep Fundamentals

Sverige - Dataprep Fundamentals

Türkiye - Dataprep Fundamentals

Malta - Dataprep Fundamentals

Belgique - Dataprep Fundamentals

France - Dataprep Fundamentals

日本 - Dataprep Fundamentals

Australia - Dataprep Fundamentals

Malaysia - Dataprep Fundamentals

New Zealand - Dataprep Fundamentals

Philippines - Dataprep Fundamentals

Singapore - Dataprep Fundamentals

Thailand - Dataprep Fundamentals

Vietnam - Dataprep Fundamentals

India - Dataprep Fundamentals

Argentina - Dataprep Fundamentals

Chile - Dataprep Fundamentals

Costa Rica - Dataprep Fundamentals

Ecuador - Dataprep Fundamentals

Guatemala - Dataprep Fundamentals

Colombia - Dataprep Fundamentals

México - Dataprep Fundamentals

Panama - Dataprep Fundamentals

Peru - Dataprep Fundamentals

Uruguay - Dataprep Fundamentals

Venezuela - Dataprep Fundamentals

Polska - Dataprep Fundamentals

United Kingdom - Dataprep Fundamentals

South Korea - Dataprep Fundamentals

Pakistan - Dataprep Fundamentals

Sri Lanka - Dataprep Fundamentals

Bulgaria - Dataprep Fundamentals

Bolivia - Dataprep Fundamentals

Indonesia - Dataprep Fundamentals

Kazakhstan - Dataprep Fundamentals

Moldova - Dataprep Fundamentals

Morocco - Dataprep Fundamentals

Tunisia - Dataprep Fundamentals

Kuwait - Dataprep Fundamentals

Oman - Dataprep Fundamentals

Slovakia - Dataprep Fundamentals

Kenya - Dataprep Fundamentals

Nigeria - Dataprep Fundamentals

Botswana - Dataprep Fundamentals

Slovenia - Dataprep Fundamentals

Croatia - Dataprep Fundamentals

Serbia - Dataprep Fundamentals

Bhutan - Dataprep Fundamentals

Nepal - Dataprep Fundamentals

Uzbekistan - Dataprep Fundamentals