Course Code: sqlpydataexp
Duration: 14 hours
Course Outline:

1.    Introduction

●    Overview of the training
●    Objectives and outcomes
●    Prerequisites

2.    SQL for Data Extraction

●    Basics of SQL
       -  Introduction to SQL
       -  SQL syntax and structure
●    Data Retrieval
       - SELECT statements
       - Filtering data with WHERE clause
       - Sorting data with ORDER BY
●    Advanced Data Retrieval
       - JOIN operations (INNER, LEFT, RIGHT, FULL)
       - Subqueries and nested queries
       - Aggregation functions (SUM, AVG, COUNT, etc.)
       - Grouping data with GROUP BY and HAVING
●    Working with Databases
       - Connecting to databases
       - Importing and exporting data

3.    Python for Data Exploration and Analysis

●    Introduction to Python
       - Python basics (variables, data types, control structures)
       - Installing and setting up Python environment
●    Data Handling with Pandas
       - Introduction to Pandas
       - DataFrames and Series
       - Importing data (CSV, Excel, SQL databases)
       - Data cleaning and preprocessing
●    Data Exploration
       - Descriptive statistics
       - Data visualization with Matplotlib and Seaborn
       - Handling missing data
       - Data transformation and feature engineering
●    Advanced Data Analysis
       - Time series analysis
       - Grouping and aggregating data
       - Merging and joining datasets
●    Regression and Forecasting for Sales
       - Introduction to regression analysis
       - Linear regression
       - Multiple regression
       - Forecasting techniques
       - Sales data forecasting

4.    Integrating SQL and Python

●    Connecting Python to SQL Databases
       - Using libraries like SQLAlchemy and Pandas
       - Executing SQL queries from Python
●    Data Pipeline Creation
       - Automating data extraction and loading
       - Scheduling and managing data workflows

5.    Case Studies and Hands-On Projects

●    Real-World Scenarios
       - End-to-end data analysis projects
       - Combining SQL and Python for comprehensive analysis
●    Group Activities
       - Collaborative projects
       - Peer reviews and presentations

6.    Conclusion

●    Recap of key concepts
●    Q&A session
●    Additional resources and next steps