Course Code: awscloud9ds
Duration: 28 hours
Prerequisites:
  • Basic understanding of data science concepts
  • Familiarity with Python programming
  • Experience with cloud environments and AWS services

Audience

  • Data scientists
  • Data analysts
  • Machine learning engineers
Overview:

AWS Cloud9 offers a robust environment for data science, enabling users to build, test, and deploy data models using cloud-based tools. This course guides participants through setting up and managing a data science environment in AWS Cloud9, with a focus on integrating with AWS services for data storage, processing, and machine learning.

This instructor-led, live training (online or onsite) is aimed at intermediate-level data scientists and analysts who wish to use AWS Cloud9 for streamlined data science workflows.

By the end of this training, participants will be able to:

  • Set up a data science environment in AWS Cloud9.
  • Perform data analysis using Python, R, and Jupyter Notebook in Cloud9.
  • Integrate AWS Cloud9 with AWS data services like S3, RDS, and Redshift.
  • Utilize AWS Cloud9 for machine learning model development and deployment.
  • Optimize cloud-based workflows for data analysis and processing.

Format of the Course

  • Interactive lecture and discussion.
  • Lots of exercises and practice.
  • Hands-on implementation in a live-lab environment.

Course Customization Options

  • To request a customized training for this course, please contact us to arrange.
Course Outline:

Introduction to AWS Cloud9 for Data Science

  • Overview of AWS Cloud9 features for data science
  • Setting up a data science environment in AWS Cloud9
  • Configuring Cloud9 for Python, R, and Jupyter Notebook

Data Ingestion and Preparation

  • Importing and cleaning data from various sources
  • Using AWS S3 for data storage and access
  • Preprocessing data for analysis and modeling

Data Analysis in AWS Cloud9

  • Exploratory data analysis using Python and R
  • Working with Pandas, NumPy, and data visualization libraries
  • Statistical analysis and hypothesis testing in Cloud9

Machine Learning Model Development

  • Building machine learning models using Scikit-learn and TensorFlow
  • Training and evaluating models in AWS Cloud9
  • Using SageMaker with Cloud9 for large-scale model development

Database Integration and Management

  • Integrating AWS RDS and Redshift with AWS Cloud9
  • Querying large datasets using SQL and Python
  • Handling big data with AWS services

Model Deployment and Optimization

  • Deploying machine learning models using AWS Lambda
  • Using AWS CloudFormation to automate deployment
  • Optimizing data pipelines for performance and cost-efficiency

Collaborative Development and Security

  • Collaborating on data science projects in Cloud9
  • Using Git for version control and project management
  • Security best practices for data and models in AWS Cloud9

Summary and Next Steps

Sites Published:

United Arab Emirates - AWS Cloud9 for Data Science

Qatar - AWS Cloud9 for Data Science

Egypt - AWS Cloud9 for Data Science

Saudi Arabia - AWS Cloud9 for Data Science

South Africa - AWS Cloud9 for Data Science

Brasil - AWS Cloud9 for Data Science

Canada - AWS Cloud9 for Data Science

中国 - AWS Cloud9 for Data Science

香港 - AWS Cloud9 for Data Science

澳門 - AWS Cloud9 for Data Science

台灣 - AWS Cloud9 for Data Science

USA - AWS Cloud9 for Data Science

Österreich - AWS Cloud9 for Data Science

Schweiz - AWS Cloud9 for Data Science

Deutschland - AWS Cloud9 for Data Science

Czech Republic - AWS Cloud9 for Data Science

Denmark - AWS Cloud9 for Data Science

Estonia - AWS Cloud9 for Data Science

Finland - AWS Cloud9 for Data Science

Greece - AWS Cloud9 for Data Science

Magyarország - AWS Cloud9 for Data Science

Ireland - AWS Cloud9 for Data Science

Luxembourg - AWS Cloud9 for Data Science

Latvia - AWS Cloud9 for Data Science

España - AWS Cloud9 for Data Science

Italia - AWS Cloud9 for Data Science

Lithuania - AWS Cloud9 for Data Science

Nederland - AWS Cloud9 for Data Science

Norway - AWS Cloud9 for Data Science

Portugal - AWS Cloud9 for Data Science

România - AWS Cloud9 for Data Science

Sverige - AWS Cloud9 for Data Science

Türkiye - AWS Cloud9 for Data Science

Malta - AWS Cloud9 for Data Science

Belgique - AWS Cloud9 for Data Science

France - AWS Cloud9 for Data Science

日本 - AWS Cloud9 for Data Science

Australia - AWS Cloud9 for Data Science

Malaysia - AWS Cloud9 for Data Science

New Zealand - AWS Cloud9 for Data Science

Philippines - AWS Cloud9 for Data Science

Singapore - AWS Cloud9 for Data Science

Thailand - AWS Cloud9 for Data Science

Vietnam - AWS Cloud9 for Data Science

India - AWS Cloud9 for Data Science

Argentina - AWS Cloud9 for Data Science

Chile - AWS Cloud9 for Data Science

Costa Rica - AWS Cloud9 for Data Science

Ecuador - AWS Cloud9 for Data Science

Guatemala - AWS Cloud9 for Data Science

Colombia - AWS Cloud9 for Data Science

México - AWS Cloud9 for Data Science

Panama - AWS Cloud9 for Data Science

Peru - AWS Cloud9 for Data Science

Uruguay - AWS Cloud9 for Data Science

Venezuela - AWS Cloud9 for Data Science

Polska - AWS Cloud9 for Data Science

United Kingdom - AWS Cloud9 for Data Science

South Korea - AWS Cloud9 for Data Science

Pakistan - AWS Cloud9 for Data Science

Sri Lanka - AWS Cloud9 for Data Science

Bulgaria - AWS Cloud9 for Data Science

Bolivia - AWS Cloud9 for Data Science

Indonesia - AWS Cloud9 for Data Science

Kazakhstan - AWS Cloud9 for Data Science

Moldova - AWS Cloud9 for Data Science

Morocco - AWS Cloud9 for Data Science

Tunisia - AWS Cloud9 for Data Science

Kuwait - AWS Cloud9 for Data Science

Oman - AWS Cloud9 for Data Science

Slovakia - AWS Cloud9 for Data Science

Kenya - AWS Cloud9 for Data Science

Nigeria - AWS Cloud9 for Data Science

Botswana - AWS Cloud9 for Data Science

Slovenia - AWS Cloud9 for Data Science

Croatia - AWS Cloud9 for Data Science

Serbia - AWS Cloud9 for Data Science

Bhutan - AWS Cloud9 for Data Science

Nepal - AWS Cloud9 for Data Science

Uzbekistan - AWS Cloud9 for Data Science