Course Code: lpedgeaieed
Duration: 21 hours
Prerequisites:
  • An understanding of deep learning models
  • Experience with embedded systems or AI deployment
  • Basic knowledge of model optimization techniques

Audience

  • AI engineers
  • Embedded developers
  • Hardware engineers
Overview:

Low-power AI focuses on optimizing AI models to run efficiently on resource-constrained and battery-operated edge devices.

This instructor-led, live training (online or onsite) is aimed at advanced-level AI engineers, embedded developers, and hardware engineers who wish to implement AI models on low-power devices while minimizing energy consumption.

By the end of this training, participants will be able to:

  • Understand the challenges of running AI on energy-efficient devices.
  • Optimize neural networks for low-power inference.
  • Utilize quantization, pruning, and model compression techniques.
  • Deploy AI models on edge hardware with minimal power usage.

Format of the Course

  • Interactive lecture and discussion.
  • Lots of exercises and practice.
  • Hands-on implementation in a live-lab environment.

Course Customization Options

  • To request a customized training for this course, please contact us to arrange.
Course Outline:

Introduction to Low-Power AI

  • Overview of AI in embedded systems
  • Challenges of AI deployment on low-power devices
  • Energy-efficient AI applications

Model Optimization Techniques

  • Quantization and its impact on performance
  • Pruning and weight sharing
  • Knowledge distillation for model simplification

Deploying AI Models on Low-Power Hardware

  • Using TensorFlow Lite and ONNX Runtime for edge AI
  • Optimizing AI models with NVIDIA TensorRT
  • Hardware acceleration with Coral TPU and Jetson Nano

Reducing Power Consumption in AI Applications

  • Power profiling and efficiency metrics
  • Low-power computing architectures
  • Dynamic power scaling and adaptive inference techniques

Case Studies and Real-World Applications

  • AI-powered battery-operated IoT devices
  • Low-power AI for healthcare and wearables
  • Smart city and environmental monitoring applications

Best Practices and Future Trends

  • Optimizing edge AI for sustainability
  • Advancements in energy-efficient AI hardware
  • Future developments in low-power AI research

Summary and Next Steps

Sites Published:

United Arab Emirates - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Qatar - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Egypt - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Saudi Arabia - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

South Africa - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Brasil - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Canada - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

中国 - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

香港 - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

澳門 - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

台灣 - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

USA - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Österreich - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Schweiz - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Deutschland - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Czech Republic - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Denmark - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Estonia - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Finland - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Greece - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Magyarország - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Ireland - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Luxembourg - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Latvia - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

España - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Italia - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Lithuania - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Nederland - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Norway - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Portugal - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

România - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Sverige - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Türkiye - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Malta - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Belgique - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

France - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

日本 - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Australia - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Malaysia - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

New Zealand - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Philippines - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Singapore - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Thailand - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Vietnam - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

India - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Argentina - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Chile - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Costa Rica - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Ecuador - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Guatemala - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Colombia - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

México - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Panama - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Peru - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Uruguay - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Venezuela - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Polska - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

United Kingdom - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

South Korea - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Pakistan - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Sri Lanka - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Bulgaria - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Bolivia - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Indonesia - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Kazakhstan - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Moldova - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Morocco - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Tunisia - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Kuwait - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Oman - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Slovakia - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Kenya - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Nigeria - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Botswana - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Slovenia - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Croatia - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Serbia - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Bhutan - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Nepal - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices

Uzbekistan - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices