- An understanding of deep learning models
- Experience with embedded systems or AI deployment
- Basic knowledge of model optimization techniques
Audience
- AI engineers
- Embedded developers
- Hardware engineers
Low-power AI focuses on optimizing AI models to run efficiently on resource-constrained and battery-operated edge devices.
This instructor-led, live training (online or onsite) is aimed at advanced-level AI engineers, embedded developers, and hardware engineers who wish to implement AI models on low-power devices while minimizing energy consumption.
By the end of this training, participants will be able to:
- Understand the challenges of running AI on energy-efficient devices.
- Optimize neural networks for low-power inference.
- Utilize quantization, pruning, and model compression techniques.
- Deploy AI models on edge hardware with minimal power usage.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Introduction to Low-Power AI
- Overview of AI in embedded systems
- Challenges of AI deployment on low-power devices
- Energy-efficient AI applications
Model Optimization Techniques
- Quantization and its impact on performance
- Pruning and weight sharing
- Knowledge distillation for model simplification
Deploying AI Models on Low-Power Hardware
- Using TensorFlow Lite and ONNX Runtime for edge AI
- Optimizing AI models with NVIDIA TensorRT
- Hardware acceleration with Coral TPU and Jetson Nano
Reducing Power Consumption in AI Applications
- Power profiling and efficiency metrics
- Low-power computing architectures
- Dynamic power scaling and adaptive inference techniques
Case Studies and Real-World Applications
- AI-powered battery-operated IoT devices
- Low-power AI for healthcare and wearables
- Smart city and environmental monitoring applications
Best Practices and Future Trends
- Optimizing edge AI for sustainability
- Advancements in energy-efficient AI hardware
- Future developments in low-power AI research
Summary and Next Steps
United Arab Emirates - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Qatar - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Egypt - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Saudi Arabia - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
South Africa - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Brasil - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Canada - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
中国 - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
香港 - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
澳門 - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
台灣 - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
USA - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Österreich - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Schweiz - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Deutschland - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Czech Republic - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Denmark - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Estonia - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Finland - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Greece - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Magyarország - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Ireland - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Luxembourg - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Latvia - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
España - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Italia - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Lithuania - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Nederland - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Norway - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Portugal - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
România - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Sverige - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Türkiye - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Malta - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Belgique - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
France - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
日本 - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Australia - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Malaysia - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
New Zealand - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Philippines - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Singapore - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Thailand - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Vietnam - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
India - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Argentina - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Chile - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Costa Rica - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Ecuador - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Guatemala - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Colombia - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
México - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Panama - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Peru - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Uruguay - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Venezuela - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Polska - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
United Kingdom - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
South Korea - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Pakistan - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Sri Lanka - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Bulgaria - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Bolivia - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Indonesia - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Kazakhstan - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Moldova - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Morocco - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Tunisia - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Kuwait - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Oman - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Slovakia - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Kenya - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Nigeria - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Botswana - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Slovenia - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Croatia - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Serbia - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Bhutan - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Nepal - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
Uzbekistan - Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices