Course Code: peftllms
Duration: 14 hours
Prerequisites:
  • An understanding of machine learning fundamentals
  • Experience working with large language models (LLMs)
  • Familiarity with Python and PyTorch

Audience

  • Data scientists
  • AI engineers
Overview:

Parameter-Efficient Fine-Tuning (PEFT) is a collection of techniques that enable efficient adaptation of large language models (LLMs) by modifying only a small subset of parameters.

This instructor-led, live training (online or onsite) is aimed at intermediate-level data scientists and AI engineers who wish to fine-tune large language models more affordably and efficiently using methods like LoRA, Adapter Tuning, and Prefix Tuning.

By the end of this training, participants will be able to:

  • Understand the theory behind parameter-efficient fine-tuning approaches.
  • Implement LoRA, Adapter Tuning, and Prefix Tuning using Hugging Face PEFT.
  • Compare performance and cost trade-offs of PEFT methods vs. full fine-tuning.
  • Deploy and scale fine-tuned LLMs with reduced compute and storage requirements.

Format of the Course

  • Interactive lecture and discussion.
  • Lots of exercises and practice.
  • Hands-on implementation in a live-lab environment.

Course Customization Options

  • To request a customized training for this course, please contact us to arrange.
Course Outline:

Introduction to Parameter-Efficient Fine-Tuning (PEFT)

  • Motivation and limitations of full fine-tuning
  • Overview of PEFT: goals and benefits
  • Applications and use cases in industry

LoRA (Low-Rank Adaptation)

  • Concept and intuition behind LoRA
  • Implementing LoRA using Hugging Face and PyTorch
  • Hands-on: Fine-tuning a model with LoRA

Adapter Tuning

  • How adapter modules work
  • Integration with transformer-based models
  • Hands-on: Applying Adapter Tuning to a transformer model

Prefix Tuning

  • Using soft prompts for fine-tuning
  • Strengths and limitations compared to LoRA and adapters
  • Hands-on: Prefix Tuning on an LLM task

Evaluating and Comparing PEFT Methods

  • Metrics for evaluating performance and efficiency
  • Trade-offs in training speed, memory usage, and accuracy
  • Benchmarking experiments and result interpretation

Deploying Fine-Tuned Models

  • Saving and loading fine-tuned models
  • Deployment considerations for PEFT-based models
  • Integrating into applications and pipelines

Best Practices and Extensions

  • Combining PEFT with quantization and distillation
  • Use in low-resource and multilingual settings
  • Future directions and active research areas

Summary and Next Steps

Sites Published:

United Arab Emirates - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Qatar - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Egypt - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Saudi Arabia - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

South Africa - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Brasil - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Canada - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

中国 - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

香港 - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

澳門 - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

台灣 - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

USA - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Österreich - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Schweiz - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Deutschland - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Czech Republic - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Denmark - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Estonia - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Finland - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Greece - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Magyarország - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Ireland - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Luxembourg - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Latvia - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

España - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Italia - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Lithuania - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Nederland - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Norway - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Portugal - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

România - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Sverige - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Türkiye - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Malta - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Belgique - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

France - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

日本 - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Australia - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Malaysia - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

New Zealand - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Philippines - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Singapore - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Thailand - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Vietnam - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

India - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Argentina - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Chile - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Costa Rica - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Ecuador - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Guatemala - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Colombia - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

México - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Panama - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Peru - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Uruguay - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Venezuela - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Polska - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

United Kingdom - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

South Korea - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Pakistan - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Sri Lanka - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Bulgaria - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Bolivia - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Indonesia - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Kazakhstan - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Moldova - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Morocco - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Tunisia - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Kuwait - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Oman - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Slovakia - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Kenya - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Nigeria - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Botswana - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Slovenia - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Croatia - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Serbia - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Bhutan - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Nepal - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs

Uzbekistan - Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs