Course Code: appliedml
Duration: 14 hours
Prerequisites:
  • Basic understanding of statistics and data analysis
  • Programming experience in R, Python, or other relevant programming languages

Audience

  • Data scientists
  • Statisticians
Overview:

The emphasis of this course is on the practical aspects of data/model preparation, execution, post hoc analysis and visualization. The purpose is to give practical applications to Machine Learning to participants interested in applying the methods at work. Sector specific examples are used to make the training relevant to the audience.

This instructor-led, live training (online or onsite) is aimed at intermediate-level data scientists and statisticians who wish to prepare data, build models, and apply machine learning techniques effectively in their professional domains.

By the end of this training, participants will be able to:

  • Understand and implement various Machine Learning algorithms.
  • Prepare data and models for machine learning applications.
  • Conduct post hoc analyses and visualize results effectively.
  • Apply machine learning techniques to real-world, sector-specific scenarios.

Format of the Course

  • Interactive lecture and discussion.
  • Lots of exercises and practice.
  • Hands-on implementation in a live-lab environment.

Course Customization Options

  • To request a customized training for this course, please contact us to arrange.
Course Outline:

Foundations of Machine Learning

  • Introduction to Machine Learning concepts and workflows
  • Supervised vs. unsupervised learning
  • Evaluating machine learning models: metrics and techniques

Bayesian Methods

  • Naive Bayes and multinomial models
  • Bayesian categorical data analysis
  • Bayesian graphical models

Regression Techniques

  • Linear regression
  • Logistic regression
  • Generalized Linear Models (GLM)
  • Mixed models and additive models

Dimensionality Reduction

  • Principal Component Analysis (PCA)
  • Factor Analysis (FA)
  • Independent Component Analysis (ICA)

Classification Methods

  • K-Nearest Neighbors (KNN)
  • Support Vector Machines (SVM) for regression and classification
  • Boosting and ensemble models

Neural Networks

  • Introduction to neural networks
  • Applications of deep learning in classification and regression
  • Training and tuning neural networks

Advanced Algorithms and Models

  • Hidden Markov Models (HMM)
  • State Space Models
  • EM Algorithm

Clustering Techniques

  • Introduction to clustering and unsupervised learning
  • Popular clustering algorithms: K-Means, Hierarchical Clustering
  • Use cases and practical applications of clustering

Summary and Next Steps

Sites Published:

United Arab Emirates - Applied Machine Learning

Qatar - Applied Machine Learning

Egypt - Applied Machine Learning

Saudi Arabia - Applied Machine Learning

South Africa - Applied Machine Learning

Brasil - Aprendizagem de Máquinas (Machine Learning) Aplicado

Canada - Applied Machine Learning

中国 - Applied Machine Learning

香港 - Applied Machine Learning

澳門 - Applied Machine Learning

台灣 - Applied Machine Learning

USA - Applied Machine Learning

Österreich - Angewandtes Maschinelles Lernen

Schweiz - Angewandtes Maschinelles Lernen

Deutschland - Angewandtes Maschinelles Lernen

Czech Republic - Applied Machine Learning

Denmark - Applied Machine Learning

Estonia - Applied Machine Learning

Finland - Applied Machine Learning

Greece - Applied Machine Learning

Magyarország - Applied Machine Learning

Ireland - Applied Machine Learning

Luxembourg - Applied Machine Learning

Latvia - Applied Machine Learning

España - Aprendizaje Automático Aplicado

Italia - Applied Machine Learning

Lithuania - Applied Machine Learning

Nederland - Applied Machine Learning

Norway - Applied Machine Learning

Portugal - Aprendizagem de Máquinas (Machine Learning) Aplicado

România - Applied Machine Learning

Sverige - Applied Machine Learning

Türkiye - Applied Machine Learning

Malta - Applied Machine Learning

Belgique - Applied Machine Learning

France - Applied Machine Learning

日本 - Applied Machine Learning

Australia - Applied Machine Learning

Malaysia - Applied Machine Learning

New Zealand - Applied Machine Learning

Philippines - Applied Machine Learning

Singapore - Applied Machine Learning

Thailand - Applied Machine Learning

Vietnam - Applied Machine Learning

India - Applied Machine Learning

Argentina - Aprendizaje Automático Aplicado

Chile - Aprendizaje Automático Aplicado

Costa Rica - Aprendizaje Automático Aplicado

Ecuador - Aprendizaje Automático Aplicado

Guatemala - Aprendizaje Automático Aplicado

Colombia - Aprendizaje Automático Aplicado

México - Aprendizaje Automático Aplicado

Panama - Aprendizaje Automático Aplicado

Peru - Aprendizaje Automático Aplicado

Uruguay - Aprendizaje Automático Aplicado

Venezuela - Aprendizaje Automático Aplicado

Polska - Applied Machine Learning

United Kingdom - Applied Machine Learning

South Korea - Applied Machine Learning

Pakistan - Applied Machine Learning

Sri Lanka - Applied Machine Learning

Bulgaria - Applied Machine Learning

Bolivia - Aprendizaje Automático Aplicado

Indonesia - Applied Machine Learning

Kazakhstan - Applied Machine Learning

Moldova - Applied Machine Learning

Morocco - Applied Machine Learning

Tunisia - Applied Machine Learning

Kuwait - Applied Machine Learning

Oman - Applied Machine Learning

Slovakia - Applied Machine Learning

Kenya - Applied Machine Learning

Nigeria - Applied Machine Learning

Botswana - Applied Machine Learning

Slovenia - Applied Machine Learning

Croatia - Applied Machine Learning

Serbia - Applied Machine Learning

Bhutan - Applied Machine Learning

Nepal - Applied Machine Learning

Uzbekistan - Applied Machine Learning