- Basic understanding of statistics and data analysis
- Programming experience in R, Python, or other relevant programming languages
Audience
- Data scientists
- Statisticians
The emphasis of this course is on the practical aspects of data/model preparation, execution, post hoc analysis and visualization. The purpose is to give practical applications to Machine Learning to participants interested in applying the methods at work. Sector specific examples are used to make the training relevant to the audience.
This instructor-led, live training (online or onsite) is aimed at intermediate-level data scientists and statisticians who wish to prepare data, build models, and apply machine learning techniques effectively in their professional domains.
By the end of this training, participants will be able to:
- Understand and implement various Machine Learning algorithms.
- Prepare data and models for machine learning applications.
- Conduct post hoc analyses and visualize results effectively.
- Apply machine learning techniques to real-world, sector-specific scenarios.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Foundations of Machine Learning
- Introduction to Machine Learning concepts and workflows
- Supervised vs. unsupervised learning
- Evaluating machine learning models: metrics and techniques
Bayesian Methods
- Naive Bayes and multinomial models
- Bayesian categorical data analysis
- Bayesian graphical models
Regression Techniques
- Linear regression
- Logistic regression
- Generalized Linear Models (GLM)
- Mixed models and additive models
Dimensionality Reduction
- Principal Component Analysis (PCA)
- Factor Analysis (FA)
- Independent Component Analysis (ICA)
Classification Methods
- K-Nearest Neighbors (KNN)
- Support Vector Machines (SVM) for regression and classification
- Boosting and ensemble models
Neural Networks
- Introduction to neural networks
- Applications of deep learning in classification and regression
- Training and tuning neural networks
Advanced Algorithms and Models
- Hidden Markov Models (HMM)
- State Space Models
- EM Algorithm
Clustering Techniques
- Introduction to clustering and unsupervised learning
- Popular clustering algorithms: K-Means, Hierarchical Clustering
- Use cases and practical applications of clustering
Summary and Next Steps
United Arab Emirates - Applied Machine Learning
Qatar - Applied Machine Learning
Egypt - Applied Machine Learning
Saudi Arabia - Applied Machine Learning
South Africa - Applied Machine Learning
Brasil - Aprendizagem de Máquinas (Machine Learning) Aplicado
Canada - Applied Machine Learning
USA - Applied Machine Learning
Österreich - Angewandtes Maschinelles Lernen
Schweiz - Angewandtes Maschinelles Lernen
Deutschland - Angewandtes Maschinelles Lernen
Czech Republic - Applied Machine Learning
Denmark - Applied Machine Learning
Estonia - Applied Machine Learning
Finland - Applied Machine Learning
Greece - Applied Machine Learning
Magyarország - Applied Machine Learning
Ireland - Applied Machine Learning
Luxembourg - Applied Machine Learning
Latvia - Applied Machine Learning
España - Aprendizaje Automático Aplicado
Italia - Applied Machine Learning
Lithuania - Applied Machine Learning
Nederland - Applied Machine Learning
Norway - Applied Machine Learning
Portugal - Aprendizagem de Máquinas (Machine Learning) Aplicado
România - Applied Machine Learning
Sverige - Applied Machine Learning
Türkiye - Applied Machine Learning
Malta - Applied Machine Learning
Belgique - Applied Machine Learning
France - Applied Machine Learning
Australia - Applied Machine Learning
Malaysia - Applied Machine Learning
New Zealand - Applied Machine Learning
Philippines - Applied Machine Learning
Singapore - Applied Machine Learning
Thailand - Applied Machine Learning
Vietnam - Applied Machine Learning
India - Applied Machine Learning
Argentina - Aprendizaje Automático Aplicado
Chile - Aprendizaje Automático Aplicado
Costa Rica - Aprendizaje Automático Aplicado
Ecuador - Aprendizaje Automático Aplicado
Guatemala - Aprendizaje Automático Aplicado
Colombia - Aprendizaje Automático Aplicado
México - Aprendizaje Automático Aplicado
Panama - Aprendizaje Automático Aplicado
Peru - Aprendizaje Automático Aplicado
Uruguay - Aprendizaje Automático Aplicado
Venezuela - Aprendizaje Automático Aplicado
Polska - Applied Machine Learning
United Kingdom - Applied Machine Learning
South Korea - Applied Machine Learning
Pakistan - Applied Machine Learning
Sri Lanka - Applied Machine Learning
Bulgaria - Applied Machine Learning
Bolivia - Aprendizaje Automático Aplicado
Indonesia - Applied Machine Learning
Kazakhstan - Applied Machine Learning
Moldova - Applied Machine Learning
Morocco - Applied Machine Learning
Tunisia - Applied Machine Learning
Kuwait - Applied Machine Learning
Oman - Applied Machine Learning
Slovakia - Applied Machine Learning
Kenya - Applied Machine Learning
Nigeria - Applied Machine Learning
Botswana - Applied Machine Learning
Slovenia - Applied Machine Learning
Croatia - Applied Machine Learning
Serbia - Applied Machine Learning
Bhutan - Applied Machine Learning