Course Code: rintrob
Duration: 28 hours
Overview:

R is an open-source free programming language for statistical computing, data analysis, and graphics. R is used by a growing number of managers and data analysts inside corporations and academia. R has also found followers among statisticians, engineers and scientists without computer programming skills who find it easy to use. Its popularity is due to the increasing use of data mining for various goals such as set ad prices, find new drugs more quickly or fine-tune financial models. R has a wide variety of packages for data mining.

Course Outline:

I. Introduction and preliminaries

1. Overview

  • Making R more friendly, R and available GUIs
  • Rstudio
  • Related software and documentation
  • R and statistics
  • Using R interactively
  • An introductory session
  • Getting help with functions and features
  • R commands, case sensitivity, etc.
  • Recall and correction of previous commands
  • Executing commands from or diverting output to a file
  • Data permanency and removing objects
  • Good programming practice:  Self-contained scripts, good    readability e.g. structured scripts, documentation, markdown
  • installing packages; CRAN and Bioconductor

2. Reading data

  • Txt files  (read.delim)
  • CSV files

3. Simple manipulations; numbers and vectors  + arrays

  • Vectors and assignment
  • Vector arithmetic
  • Generating regular sequences
  • Logical vectors
  • Missing values
  • Character vectors
  • Index vectors; selecting and modifying subsets of a data set
    • Arrays
  • Array indexing. Subsections of an array
  • Index matrices
  • The array() function + simple operations on arrays e.g. multiplication, transposition  
  • Other types of objects

4. Lists and data frames

  • Lists
  • Constructing and modifying lists
    • Concatenating lists
  • Data frames
    • Making data frames
    • Working with data frames
    • Attaching arbitrary lists
    • Managing the search path

5. Data manipulation

  • Selecting, subsetting observations and variables         
  • Filtering, grouping
  • Recoding, transformations
  • Aggregation, combining data sets
  • Forming partitioned matrices, cbind() and rbind()
  • The concatenation function, (), with arrays
  • Character manipulation, stringr package
  • short intro into grep and regexpr

6. More on Reading data                                            

  • XLS, XLSX files
  • readr  and readxl packages
  • SPSS, SAS, Stata,… and other formats data
  • Exporting data to txt, csv and other formats

6. Grouping, loops and conditional execution

  • Grouped expressions
  • Control statements
  • Conditional execution: if statements
  • Repetitive execution: for loops, repeat and while
  • intro into apply, lapply, sapply, tapply

7. Functions

  • Creating functions
  • Optional arguments and default values
  • Variable number of arguments
  • Scope and its consequences

8. Simple graphics in R

  • Creating a Graph
  • Density Plots
  • Dot Plots
  • Bar Plots
  • Line Charts
  • Pie Charts
  • Boxplots
  • Scatter Plots
  • Combining Plots

II. Statistical analysis in R 

1.    Probability distributions

  • R as a set of statistical tables
  • Examining the distribution of a set of data

2.   Testing of Hypotheses

  • Tests about a Population Mean
  • Likelihood Ratio Test
  • One- and two-sample tests
  • Chi-Square Goodness-of-Fit Test
  • Kolmogorov-Smirnov One-Sample Statistic 
  • Wilcoxon Signed-Rank Test
  • Two-Sample Test
  • Wilcoxon Rank Sum Test
  • Mann-Whitney Test
  • Kolmogorov-Smirnov Test

3. Multiple Testing of Hypotheses

  • Type I Error and FDR
  • ROC curves and AUC
  • Multiple Testing Procedures (BH, Bonferroni etc.)

4. Linear regression models

  • Generic functions for extracting model information
  • Updating fitted models
  • Generalized linear models
    • Families
    • The glm() function
  • Classification
    • Logistic Regression
    • Linear Discriminant Analysis
  • Unsupervised learning
    • Principal Components Analysis
    • Clustering Methods(k-means, hierarchical clustering, k-medoids)

5.  Survival analysis (survival package)

  • Survival objects in r
  • Kaplan-Meier estimate, log-rank test, parametric regression
  • Confidence bands
  • Censored (interval censored) data analysis
  • Cox PH models, constant covariates
  • Cox PH models, time-dependent covariates
  • Simulation: Model comparison (Comparing regression models)

 6.   Analysis of Variance

  • One-Way ANOVA
  • Two-Way Classification of ANOVA
  • MANOVA

III. Worked problems in bioinformatics           

  • Short introduction to limma package
  • Microarray data analysis workflow
  • Data download from GEO: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1397
  • Data processing (QC, normalisation, differential expression)
  • Volcano plot             
  • Custering examples + heatmaps
Sites Published:

Brasil - Introductory R for Biologists

Canada - Introductory R for Biologists

中国 - Introductory R for Biologists

香港 - Introductory R for Biologists

澳門 - Introductory R for Biologists

台灣 - Introductory R for Biologists

USA - Introductory R for Biologists

Österreich - Introductory R for Biologists

Schweiz - Introductory R for Biologists

Deutschland - Introductory R for Biologists

Czech Republic - Introductory R for Biologists

Denmark - Introductory R for Biologists

Estonia - Introductory R for Biologists

Finland - Introductory R for Biologists

Greece - Introductory R for Biologists

Magyarország - Introductory R for Biologists

Ireland - Introductory R for Biologists

Luxembourg - Introductory R for Biologists

Latvia - Introductory R for Biologists

España - Introducción R para Biólogos

Italia - Introductory R for Biologists

Lithuania - Introductory R for Biologists

Nederland - Introductory R for Biologists

Norway - Introductory R for Biologists

Portugal - Introductory R for Biologists

România - Introductory R for Biologists

Sverige - Introductory R for Biologists

Türkiye - Introductory R for Biologists

Malta - Introductory R for Biologists

Belgique - Introductory R for Biologists

France - Introductory R for Biologists

日本 - Introductory R for Biologists

Australia - Introductory R for Biologists

Malaysia - Introductory R for Biologists

New Zealand - Introductory R for Biologists

Philippines - Introductory R for Biologists

Singapore - Introductory R for Biologists

Thailand - Introductory R for Biologists

Vietnam - Introductory R for Biologists

India - Introductory R for Biologists

Argentina - Introducción R para Biólogos

Chile - Introducción R para Biólogos

Costa Rica - Introducción R para Biólogos

Ecuador - Introducción R para Biólogos

Guatemala - Introducción R para Biólogos

Colombia - Introducción R para Biólogos

México - Introducción R para Biólogos

Panama - Introducción R para Biólogos

Peru - Introducción R para Biólogos

Uruguay - Introducción R para Biólogos

Venezuela - Introducción R para Biólogos

Polska - Introductory R for Biologists

United Kingdom - Introductory R for Biologists

South Korea - Introductory R for Biologists

Pakistan - Introductory R for Biologists

Sri Lanka - Introductory R for Biologists

Bulgaria - Introductory R for Biologists

Bolivia - Introducción R para Biólogos

Indonesia - Introductory R for Biologists

Kazakhstan - Introductory R for Biologists

Moldova - Introductory R for Biologists

Slovakia - Introductory R for Biologists

Slovenia - Introductory R for Biologists

Croatia - Introductory R for Biologists

Serbia - Introductory R for Biologists

Bhutan - Introductory R for Biologists

Nepal - Introductory R for Biologists

Uzbekistan - Introductory R for Biologists