None
Learn to implement end-to-end big data streaming use cases. Real-time data preparation and maintenance with Informatica, Edge, Kafka and Spark. This training covers software versions 10.2.1 and up.
Objectives
After successfully completing this course, students should be able to:
- Discuss streaming
- Describe Kappa architecture
- List the types of streaming data
- Create an EDS Service
- Create, deploy, and monitor a data flow
- List the BDS key features
- Describe the BDS component architecture
- Describe Kafka data objects
- Create Kafka connections
- Discuss and list sources, and targets in a streaming mapping
- Discuss lookup sources
- Execute a streaming mapping
- Monitor logs and troubleshoot streaming mappings
Module 1: Streaming Overview
- Key differences between batch and streaming
- Streaming Data Management use cases
- Streaming architecture
- Kappa architecture
- End-to-end Streaming Data Management
- Types of Streaming data
- Benefits of Streaming
Module 2: Edge Data Streaming (EDS) Overview
- EDS architecture
- EDS key features
- EDS Data flow process
- EDS UI
- Create an EDS Service
- Create a data flow
- Deploy a data flow
- Monitor the data flow
- Lab1: Create Edge Data Streaming Service
- Lab2: Create and Deploy a Data Flow
Module 3: Big Data Streaming Overview
- Big Data Streaming overview
- Stream Data Processing with Spark streaming
- BDS component architecture
- BDS key features
Module 4: Kafka Overview
- Kafka Concepts
- Kafka core APIs
- Topics in Kafka
- Kafka models
- Kafka Use cases
- Lab: Create a Kafka connection
Module 5: Streaming Mappings
- Sources in a Streaming Mapping
- Targets in Streaming Mapping
- Lookup sources
- Kafka Data Object Properties
- Lab: Create a Mapping with Kafka Source and HDFS Target
- Lab: Create a Mapping with Kafka Source and Kafka Target
- BDS Transformations
- Lab: Enhance Mapping Using Filter and Expression Transformations
- Lab: Enhance Mapping Using Window and Aggregator Transformations
- Lab: Enhance Mapping Using Sorter and Rank Transformations
Module 6: Monitoring Logs and Troubleshooting
- Spark Monitoring
- Viewing Logs
- Troubleshooting
- Lab: Monitor an EDS Data Flow
- Lab: Monitor a BDS Mapping
Module 7: Performance Tuning and Best Practices
- Tune performance of Spark jobs
- List some best practices while working with streaming data
Module 8: End-to-End Use Case
- Use Case
- EDS and BDS – Final Goal
- Lab: Convert Unstructured Streaming Data into Structured Data
- Lab: Ingest Data from EDS to BDS and Execute a Mapping in BDS
United Arab Emirates - Big Data Streaming for Developers
Qatar - Big Data Streaming for Developers
Egypt - Big Data Streaming for Developers
Saudi Arabia - Big Data Streaming for Developers
South Africa - Big Data Streaming for Developers
Morocco - Big Data Streaming for Developers
Tunisia - Big Data Streaming for Developers
Kuwait - Big Data Streaming for Developers
Oman - Big Data Streaming for Developers
Slovakia - Big Data Streaming for Developers
Kenya - Big Data Streaming for Developers
Nigeria - Big Data Streaming for Developers
Botswana - Big Data Streaming for Developers
Slovenia - Big Data Streaming for Developers
Croatia - Big Data Streaming for Developers
Serbia - Big Data Streaming for Developers
Bhutan - Big Data Streaming for Developers