- An understanding of AI and machine learning concepts
- Experience with AI model development
- Basic programming skills (Python recommended)
Audience
- AI developers
- Machine learning engineers
- System architects
Optimizing AI Models for Edge Devices focuses on techniques for optimizing AI models to run efficiently on edge hardware. This course covers model compression, quantization, and other optimization techniques, providing practical knowledge for building performant AI models for edge devices.
This instructor-led, live training (online or onsite) is aimed at intermediate-level AI developers, machine learning engineers, and system architects who wish to optimize AI models for edge deployment.
By the end of this training, participants will be able to:
- Understand the challenges and requirements of deploying AI models on edge devices.
- Apply model compression techniques to reduce the size and complexity of AI models.
- Utilize quantization methods to enhance model efficiency on edge hardware.
- Implement pruning and other optimization techniques to improve model performance.
- Deploy optimized AI models on various edge devices.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Introduction to Edge AI Optimization
- Overview of edge AI and its challenges
- Importance of model optimization for edge devices
- Case studies of optimized AI models in edge applications
Model Compression Techniques
- Introduction to model compression
- Techniques for reducing model size
- Hands-on exercises for model compression
Quantization Methods
- Overview of quantization and its benefits
- Types of quantization (post-training, quantization-aware training)
- Hands-on exercises for model quantization
Pruning and Other Optimization Techniques
- Introduction to pruning
- Methods for pruning AI models
- Other optimization techniques (e.g., knowledge distillation)
- Hands-on exercises for model pruning and optimization
Deploying Optimized Models on Edge Devices
- Preparing the edge device environment
- Deploying and testing optimized models
- Troubleshooting deployment issues
- Hands-on exercises for model deployment
Tools and Frameworks for Optimization
- Overview of tools and frameworks (e.g., TensorFlow Lite, ONNX)
- Using TensorFlow Lite for model optimization
- Hands-on exercises with optimization tools
Real-World Applications and Case Studies
- Review of successful edge AI optimization projects
- Discussion of industry-specific use cases
- Hands-on project for building and optimizing a real-world application
Summary and Next Steps
United Arab Emirates - Optimizing AI Models for Edge Devices
Qatar - Optimizing AI Models for Edge Devices
Egypt - Optimizing AI Models for Edge Devices
Saudi Arabia - Optimizing AI Models for Edge Devices
South Africa - Optimizing AI Models for Edge Devices
Brasil - Optimizing AI Models for Edge Devices
Canada - Optimizing AI Models for Edge Devices
中国 - Optimizing AI Models for Edge Devices
香港 - Optimizing AI Models for Edge Devices
澳門 - Optimizing AI Models for Edge Devices
台灣 - Optimizing AI Models for Edge Devices
USA - Optimizing AI Models for Edge Devices
Österreich - Optimizing AI Models for Edge Devices
Schweiz - Optimizing AI Models for Edge Devices
Deutschland - Optimizing AI Models for Edge Devices
Czech Republic - Optimizing AI Models for Edge Devices
Denmark - Optimizing AI Models for Edge Devices
Estonia - Optimizing AI Models for Edge Devices
Finland - Optimizing AI Models for Edge Devices
Greece - Optimizing AI Models for Edge Devices
Magyarország - Optimizing AI Models for Edge Devices
Ireland - Optimizing AI Models for Edge Devices
Luxembourg - Optimizing AI Models for Edge Devices
Latvia - Optimizing AI Models for Edge Devices
España - Optimizing AI Models for Edge Devices
Italia - Optimizing AI Models for Edge Devices
Lithuania - Optimizing AI Models for Edge Devices
Nederland - Optimizing AI Models for Edge Devices
Norway - Optimizing AI Models for Edge Devices
Portugal - Optimizing AI Models for Edge Devices
România - Optimizing AI Models for Edge Devices
Sverige - Optimizing AI Models for Edge Devices
Türkiye - Optimizing AI Models for Edge Devices
Malta - Optimizing AI Models for Edge Devices
Belgique - Optimizing AI Models for Edge Devices
France - Optimizing AI Models for Edge Devices
日本 - Optimizing AI Models for Edge Devices
Australia - Optimizing AI Models for Edge Devices
Malaysia - Optimizing AI Models for Edge Devices
New Zealand - Optimizing AI Models for Edge Devices
Philippines - Optimizing AI Models for Edge Devices
Singapore - Optimizing AI Models for Edge Devices
Thailand - Optimizing AI Models for Edge Devices
Vietnam - Optimizing AI Models for Edge Devices
India - Optimizing AI Models for Edge Devices
Argentina - Optimizing AI Models for Edge Devices
Chile - Optimizing AI Models for Edge Devices
Costa Rica - Optimizing AI Models for Edge Devices
Ecuador - Optimizing AI Models for Edge Devices
Guatemala - Optimizing AI Models for Edge Devices
Colombia - Optimizing AI Models for Edge Devices
México - Optimizing AI Models for Edge Devices
Panama - Optimizing AI Models for Edge Devices
Peru - Optimizing AI Models for Edge Devices
Uruguay - Optimizing AI Models for Edge Devices
Venezuela - Optimizing AI Models for Edge Devices
Polska - Optimizing AI Models for Edge Devices
United Kingdom - Optimizing AI Models for Edge Devices
South Korea - Optimizing AI Models for Edge Devices
Pakistan - Optimizing AI Models for Edge Devices
Sri Lanka - Optimizing AI Models for Edge Devices
Bulgaria - Optimizing AI Models for Edge Devices
Bolivia - Optimizing AI Models for Edge Devices
Indonesia - Optimizing AI Models for Edge Devices
Kazakhstan - Optimizing AI Models for Edge Devices
Moldova - Optimizing AI Models for Edge Devices
Morocco - Optimizing AI Models for Edge Devices
Tunisia - Optimizing AI Models for Edge Devices
Kuwait - Optimizing AI Models for Edge Devices
Oman - Optimizing AI Models for Edge Devices
Slovakia - Optimizing AI Models for Edge Devices
Kenya - Optimizing AI Models for Edge Devices
Nigeria - Optimizing AI Models for Edge Devices
Botswana - Optimizing AI Models for Edge Devices
Slovenia - Optimizing AI Models for Edge Devices
Croatia - Optimizing AI Models for Edge Devices
Serbia - Optimizing AI Models for Edge Devices
Bhutan - Optimizing AI Models for Edge Devices