Course Code: ftlmedgeai
Duration: 14 hours
Prerequisites:
  • Zrozumienie podstaw uczenia maszynowego
  • Doświadczenie z Python i ramami głębokiego uczenia
  • Zapoznanie z systemami osadzonymi lub ograniczeniami urządzeń krawędziowych

Grupa docelowa

  • Deweloperzy sztucznej inteligencji osadzonej
  • Specjaliści od obliczeń krawędziowych
  • Inżynierowie uczenia maszynowego skupieni na wdrażaniu krawędziowym
Overview:
Dostosowanie modeli jest procesem dostosowywania pre-trenowanych modeli do określonych zadań lub środowisk.To szkolenie prowadzone przez instruktora (online lub stacjonarne) jest skierowane do zaawansowanych developerów sztucznej inteligencji wbudowanej oraz specjalistów obliczeń na krawędzi, którzy chcą dostosowywać i optymalizować lekki AI modele do wdrożenia na urządzeniach o ograniczonych zasobach.Na zakończenie tego szkolenia uczestnicy będą mogli:
  • Wybierać i dostosowywać pre-trenowane modele odpowiednie do wdrożenia na krawędzi.
  • Zastosowywać kwantyzację, przycinanie oraz inne techniki kompresji, aby zmniejszyć rozmiar modeli i opóźnienia.
  • Dostosowywać modele za pomocą transfer learning do uzyskania wydajności dostosowanej do zadania.
  • Wdrażać optymalizowane modele na prawdziwych platformach sprzętowych krawędzi.
Format kursu
  • Interaktywne wykłady i dyskusje.
  • Dużo ćwiczeń i praktyki.
  • Ręczne wdrożenie w środowisku live-lab.
Opcje dostosowywania kursu
  • Aby poprosić o dostosowane szkolenie dla tego kursu, prosimy o kontakt w celu uzgodnienia.
Course Outline:
Wprowadzenie do Edge AI i optymalizacji modeli- Zrozumienie obliczeń na krawędzi i obciążeń AI- Kompromisy: wydajność vs. ograniczenia zasobów- Przegląd strategii optymalizacji modeliWybór modelu i pre-trainingu- Wybieranie lekkości modeli (np. MobileNet, TinyML, SqueezeNet)- Zrozumienie architektury modeli nadających się do urządzeń na krawędzi- Używanie pre-trainowanych modeli jako bazyFine-Tuning i transfer learning- Zasady transfer learning- Dostosowywanie modeli do niestandardowych zbiorów danych- Praktyczne przepływy dostrajaniaKwantyzacja modeli- Techniki kwantyzacji po-trainingowej- Kwantyzacja-aware training- Ocena i kompromisyPrzycinanie i kompresja modeli- Strategie przycinania (strukturowane vs. niesstrukturowane)- Kompresja i wspólne udostępnianie wag- Benchmarking skompresowanych modeliRamy i narzędzia wdrażania- TensorFlow Lite, PyTorch Mobile, ONNX- Kompatybilność z oprogramowaniem na krawędzi i środowiskami uruchomieniowymi- Łańcuchy narzędzi do wdrażania na wielu platformachPrzykładowe wdrażanie- Wdrażanie do Raspberry Pi, Jetson Nano i urządzeń mobilnych- Profilowanie i benchmarking- Diagnostykowanie problemów z wdrażaniemPodsumowanie i kolejne kroki
Sites Published:

United Arab Emirates - Fine-Tuning Lightweight Models for Edge AI Deployment

Qatar - Fine-Tuning Lightweight Models for Edge AI Deployment

Egypt - Fine-Tuning Lightweight Models for Edge AI Deployment

Saudi Arabia - Fine-Tuning Lightweight Models for Edge AI Deployment

South Africa - Fine-Tuning Lightweight Models for Edge AI Deployment

Brasil - Fine-Tuning Lightweight Models for Edge AI Deployment

Canada - Fine-Tuning Lightweight Models for Edge AI Deployment

中国 - Fine-Tuning Lightweight Models for Edge AI Deployment

香港 - Fine-Tuning Lightweight Models for Edge AI Deployment

澳門 - Fine-Tuning Lightweight Models for Edge AI Deployment

台灣 - Fine-Tuning Lightweight Models for Edge AI Deployment

USA - Fine-Tuning Lightweight Models for Edge AI Deployment

Österreich - Fine-Tuning Lightweight Models for Edge AI Deployment

Schweiz - Fine-Tuning Lightweight Models for Edge AI Deployment

Deutschland - Fine-Tuning Lightweight Models for Edge AI Deployment

Czech Republic - Fine-Tuning Lightweight Models for Edge AI Deployment

Denmark - Fine-Tuning Lightweight Models for Edge AI Deployment

Estonia - Fine-Tuning Lightweight Models for Edge AI Deployment

Finland - Fine-Tuning Lightweight Models for Edge AI Deployment

Greece - Fine-Tuning Lightweight Models for Edge AI Deployment

Magyarország - Fine-Tuning Lightweight Models for Edge AI Deployment

Ireland - Fine-Tuning Lightweight Models for Edge AI Deployment

Luxembourg - Fine-Tuning Lightweight Models for Edge AI Deployment

Latvia - Fine-Tuning Lightweight Models for Edge AI Deployment

España - Fine-Tuning Lightweight Models for Edge AI Deployment

Italia - Fine-Tuning Lightweight Models for Edge AI Deployment

Lithuania - Fine-Tuning Lightweight Models for Edge AI Deployment

Nederland - Fine-Tuning Lightweight Models for Edge AI Deployment

Norway - Fine-Tuning Lightweight Models for Edge AI Deployment

Portugal - Fine-Tuning Lightweight Models for Edge AI Deployment

România - Fine-Tuning Lightweight Models for Edge AI Deployment

Sverige - Fine-Tuning Lightweight Models for Edge AI Deployment

Türkiye - Fine-Tuning Lightweight Models for Edge AI Deployment

Malta - Fine-Tuning Lightweight Models for Edge AI Deployment

Belgique - Fine-Tuning Lightweight Models for Edge AI Deployment

France - Fine-Tuning Lightweight Models for Edge AI Deployment

日本 - Fine-Tuning Lightweight Models for Edge AI Deployment

Australia - Fine-Tuning Lightweight Models for Edge AI Deployment

Malaysia - Fine-Tuning Lightweight Models for Edge AI Deployment

New Zealand - Fine-Tuning Lightweight Models for Edge AI Deployment

Philippines - Fine-Tuning Lightweight Models for Edge AI Deployment

Singapore - Fine-Tuning Lightweight Models for Edge AI Deployment

Thailand - Fine-Tuning Lightweight Models for Edge AI Deployment

Vietnam - Fine-Tuning Lightweight Models for Edge AI Deployment

India - Fine-Tuning Lightweight Models for Edge AI Deployment

Argentina - Fine-Tuning Lightweight Models for Edge AI Deployment

Chile - Fine-Tuning Lightweight Models for Edge AI Deployment

Costa Rica - Fine-Tuning Lightweight Models for Edge AI Deployment

Ecuador - Fine-Tuning Lightweight Models for Edge AI Deployment

Guatemala - Fine-Tuning Lightweight Models for Edge AI Deployment

Colombia - Fine-Tuning Lightweight Models for Edge AI Deployment

México - Fine-Tuning Lightweight Models for Edge AI Deployment

Panama - Fine-Tuning Lightweight Models for Edge AI Deployment

Peru - Fine-Tuning Lightweight Models for Edge AI Deployment

Uruguay - Fine-Tuning Lightweight Models for Edge AI Deployment

Venezuela - Fine-Tuning Lightweight Models for Edge AI Deployment

Polska - Fine-Tuning Lightweight Models for Edge AI Deployment

United Kingdom - Fine-Tuning Lightweight Models for Edge AI Deployment

South Korea - Fine-Tuning Lightweight Models for Edge AI Deployment

Pakistan - Fine-Tuning Lightweight Models for Edge AI Deployment

Sri Lanka - Fine-Tuning Lightweight Models for Edge AI Deployment

Bulgaria - Fine-Tuning Lightweight Models for Edge AI Deployment

Bolivia - Fine-Tuning Lightweight Models for Edge AI Deployment

Indonesia - Fine-Tuning Lightweight Models for Edge AI Deployment

Kazakhstan - Fine-Tuning Lightweight Models for Edge AI Deployment

Moldova - Fine-Tuning Lightweight Models for Edge AI Deployment

Morocco - Fine-Tuning Lightweight Models for Edge AI Deployment

Tunisia - Fine-Tuning Lightweight Models for Edge AI Deployment

Kuwait - Fine-Tuning Lightweight Models for Edge AI Deployment

Oman - Fine-Tuning Lightweight Models for Edge AI Deployment

Slovakia - Fine-Tuning Lightweight Models for Edge AI Deployment

Kenya - Fine-Tuning Lightweight Models for Edge AI Deployment

Nigeria - Fine-Tuning Lightweight Models for Edge AI Deployment

Botswana - Fine-Tuning Lightweight Models for Edge AI Deployment

Slovenia - Fine-Tuning Lightweight Models for Edge AI Deployment

Croatia - Fine-Tuning Lightweight Models for Edge AI Deployment

Serbia - Fine-Tuning Lightweight Models for Edge AI Deployment

Bhutan - Fine-Tuning Lightweight Models for Edge AI Deployment

Nepal - Fine-Tuning Lightweight Models for Edge AI Deployment

Uzbekistan - Fine-Tuning Lightweight Models for Edge AI Deployment