- 了解软件开发周期
- 具有构建或使用 Machine Learning 模型的经验
- 熟悉 Python 编程
观众
- ML工程师
- DevOps 工程师
- 数据工程师
- 基础设施工程师
- 软件开发人员
MLOps 是一套用于结合 Machine Learning 和 DevOps 实践的工具和方法。MLOps 的目标是自动化和优化生产中 ML 系统的部署和维护。
这种以讲师为主导的现场培训(现场或远程)针对的是希望评估当今可用的方法和工具的工程师,以便就在其组织内采用MLOps的前进道路做出明智的决定。
在培训结束时,参与者将能够:
- 安装和配置各种 MLOps 框架和工具。
- 组建一支具有正确技能的正确团队,以构建和支持 MLOps 系统。
- 准备、验证和版本控制数据以供 ML 模型使用。
- 了解 ML 管道的组件以及构建管道所需的工具。
- 尝试使用不同的机器学习框架和服务器进行部署到生产环境。
- 操作整个 Machine Learning 过程,使其可复制和可维护。
课程形式
- 互动讲座和讨论。
- 大量的练习和练习。
- 在现场实验室环境中实际实施。
课程定制选项
- 如需申请此课程的定制培训,请联系我们进行安排。
介绍
- Machine Learning 模型与传统软件的对比
DevOps 工作流概述
Machine Learning 工作流概述
ML 即代码加数据
ML 系统的组件
案例研究:销售 Forecasting 应用程序
Accessing 数据
验证数据
数据转换
从数据管道到 ML 管道
构建数据模型
训练模型
验证模型
再现模型训练
部署模型
将经过训练的模型提供到生产环境
测试 ML 系统
持续交付编排
监视模型
数据版本控制
调整、扩展和维护 MLOps 平台
故障 排除
总结和结论
United Arab Emirates - MLOps: CI/CD for Machine Learning
Qatar - MLOps: CI/CD for Machine Learning
Egypt - MLOps: CI/CD for Machine Learning
Saudi Arabia - MLOps: CI/CD for Machine Learning
South Africa - MLOps: CI/CD for Machine Learning
Brasil - MLOps: CI/CD for Machine Learning
Canada - MLOps: CI/CD for Machine Learning
中国 - MLOps: CI/CD for Machine Learning
香港 - MLOps: CI/CD for Machine Learning
澳門 - MLOps: CI/CD for Machine Learning
台灣 - MLOps: CI/CD for Machine Learning
USA - MLOps: CI/CD for Machine Learning
Österreich - MLOps: CI/CD for Machine Learning
Schweiz - MLOps: CI/CD for Machine Learning
Deutschland - MLOps: CI/CD for Machine Learning
Czech Republic - MLOps: CI/CD for Machine Learning
Denmark - MLOps: CI/CD for Machine Learning
Estonia - MLOps: CI/CD for Machine Learning
Finland - MLOps: CI/CD for Machine Learning
Greece - MLOps: CI/CD for Machine Learning
Magyarország - MLOps: CI/CD for Machine Learning
Ireland - MLOps: CI/CD for Machine Learning
Luxembourg - MLOps: CI/CD for Machine Learning
Latvia - MLOps: CI/CD for Machine Learning
España - MLOps: CI/CD for Machine Learning
Italia - MLOps: CI/CD for Machine Learning
Lithuania - MLOps: CI/CD for Machine Learning
Nederland - MLOps: CI/CD for Machine Learning
Norway - MLOps: CI/CD for Machine Learning
Portugal - MLOps: CI/CD for Machine Learning
România - MLOps: CI/CD for Machine Learning
Sverige - MLOps: CI/CD for Machine Learning
Türkiye - MLOps: CI/CD for Machine Learning
Malta - MLOps: CI/CD for Machine Learning
Belgique - MLOps: CI/CD for Machine Learning
France - MLOps: CI/CD for Machine Learning
日本 - MLOps: CI/CD for Machine Learning
Australia - MLOps: CI/CD for Machine Learning
Malaysia - MLOps: CI/CD for Machine Learning
New Zealand - MLOps: CI/CD for Machine Learning
Philippines - MLOps: CI/CD for Machine Learning
Singapore - MLOps: CI/CD for Machine Learning
Thailand - MLOps: CI/CD for Machine Learning
Vietnam - MLOps: CI/CD for Machine Learning
Argentina - MLOps: CI/CD for Machine Learning
Chile - MLOps: CI/CD for Machine Learning
Costa Rica - MLOps: CI/CD for Machine Learning
Ecuador - MLOps: CI/CD for Machine Learning
Guatemala - MLOps: CI/CD for Machine Learning
Colombia - MLOps: CI/CD for Machine Learning
México - MLOps: CI/CD for Machine Learning
Panama - MLOps: CI/CD for Machine Learning
Peru - MLOps: CI/CD for Machine Learning
Uruguay - MLOps: CI/CD for Machine Learning
Venezuela - MLOps: CI/CD for Machine Learning
Polska - MLOps: CI/CD for Machine Learning
United Kingdom - MLOps: CI/CD for Machine Learning
South Korea - MLOps: CI/CD for Machine Learning
Bulgaria - MLOps: CI/CD for Machine Learning
Bolivia - MLOps: CI/CD for Machine Learning
Indonesia - MLOps: CI/CD for Machine Learning
Kazakhstan - MLOps: CI/CD for Machine Learning
Moldova - MLOps: CI/CD for Machine Learning
Morocco - MLOps: CI/CD for Machine Learning
Tunisia - MLOps: CI/CD for Machine Learning
Kuwait - MLOps: CI/CD for Machine Learning
Oman - MLOps: CI/CD for Machine Learning
Slovakia - MLOps: CI/CD for Machine Learning
Kenya - MLOps: CI/CD for Machine Learning
Nigeria - MLOps: CI/CD for Machine Learning
Botswana - MLOps: CI/CD for Machine Learning
Slovenia - MLOps: CI/CD for Machine Learning
Croatia - MLOps: CI/CD for Machine Learning
Serbia - MLOps: CI/CD for Machine Learning
Bhutan - MLOps: CI/CD for Machine Learning