-
Introduction to Python Language and IDEs
-
Virtual Environments – Conda
-
IPython
-
JupyterLab – IPython IDE
-
Markdown for Reproducible research
-
-
Programming with Python
-
Data Types
-
Data Structures
-
Conditional Execution and Flow Control
-
Loops
-
Functions
-
-
Working with OS & Data
-
Connecting with SQL Database
-
From SQL to pandas DataFrame
-
Writing to disk
-
Tstables, PyTables
-
-
Data Wrangling I
-
Ndarray data representation
-
Vectorization and broadcasting
-
Indexing, Filtering, mapping functions, sortingm reindexing
-
Aggregations grouping, pivot tables
-
Basic statistics, unique values
-
Hierarchical indexes
-
-
Data Wrangling II
-
Data Cleansing
-
Imputation
-
Merge, Join
-
Long wide format
-
Groupby
-
Sampling
-
-
Data Visualization
-
Basics plots with matplotlib
-
Formatting plots
-
2D plots
-
Statistical plots
-
Interactive plots
-
-
Financial Time Series Analysis
-
DateTime objects and representation – day time, timestamp
-
DateTimeIndex – organising data into DataFrame
-
Generating DateTime range, leading, lagging
-
Timezones, location, conversion
-
Computations for Time Series data -rolling computation, frequency conversion
-
Correlation Analysis
-
-
Optimization techniques and Numerical computing
-
Regression
-
Interpolation
-
Convex optimization
-
Integration
-
Symbolic computation
-
-
Stochastics and Statistics
-
Random Numbers
-
Simulations
-
Valuation
-
Risk measures
-
Statistical modeling with statsmodels
-
-
Good programming practice
-
Performance programming in Python – loops, algorithms, simulations
-
Creating good scripts and using __main__
-
Generators, Iterators
-
Itertools – efficient loops
-
Collections – enhanced objects
-
Course Code:
bspa1
Duration:
35 hours