Course Code: dlfortelecomwithpython
Duration: 28 hours
Prerequisites:
  • 具有 Python 程式設計經驗
  • 對電信概念有大致的瞭解
  • 對統計學和數學概念有基本的瞭解

觀眾

  • 開發人員
  • 數據科學家
Overview:

機器學習是人工智慧的一個分支,其中計算機具有無需明確程式設計即可學習的能力。

深度學習是機器學習的一個子領域,它使用基於學習數據表示和結構(如神經網路)的方法。

Python 是一種高級程式設計語言,以其清晰的語法和代碼可讀性而聞名。

在這個以講師為主導的現場培訓中,參與者將學習如何使用Python實施電信深度學習模型,同時逐步創建深度學習信用風險模型。

在培訓結束時,參與者將能夠:

  • 瞭解深度學習的基本概念。
  • 瞭解深度學習在電信中的應用和用途。
  • 使用 Python、Keras 和 TensorFlow 創建電信深度學習模型。
  • 使用 Python 構建自己的深度學習客戶流失預測模型。

課程形式

  • 互動講座和討論。
  • 大量的練習和練習。
  • 在現場實驗室環境中實際實施。

課程定製選項

  • 如需申請此課程的定製培訓,請聯繫我們進行安排。
Course Outline:

介紹

人工智慧基礎和 Machine Learning

瞭解 Deep Learning

  • Deep Learning的基本概念概述
  • 區分 Machine Learning 和 Deep Learning
  • Deep Learning 的應用概述

Neural Networks概述

  • 什麼是 Neural Networks
  • Neural Networks 與回歸模型
  • 瞭解 Mathematical 基礎和學習機制
  • 構建人工神經網路
  • 了解神經節點和連接
  • 處理神經元、層以及輸入和輸出數據
  • 瞭解單層感知器
  • 監督學習和無監督學習之間的區別
  • 學習前饋和反饋 Neural Networks
  • 瞭解前向傳播和反向傳播
  • 了解長短期記憶 (LSTM)
  • 在實踐中探索復發性 Neural Networks
  • 在實踐中探索卷積 Neural Networks
  • 改進方式 Neural Networks 學習

Telecom 中使用的 Deep Learning 技術概述

  • Neural Networks
  • 自然語言處理
  • 圖像識別
  • Speech Recognition
  • 情感 分析

探索 Deep Learning 案例研究 Telecom

  • 通過即時網路流量分析優化路由和服務品質
  • 預測網路和設備故障、中斷、需求激增等。
  • 即時分析電話以識別欺詐行為
  • 分析客戶行為以確定對新產品和服務的需求
  • 處理大量SMS消息以獲得見解
  • Speech Recognition 用於支持電話
  • 即時配置 SDN 和虛擬化網路

瞭解 Deep Learning 對 Telecom 的好處

探索不同的 Deep Learning 庫 Python

  • TensorFlow
  • Keras

將 Python 與 TensorFlow 設定為 Deep Learning

  • 安裝 TensorFlow Python API
  • 測試 TensorFlow 安裝
  • 設置 TensorFlow 進行開發
  • 訓練您的第一個 TensorFlow 神經網路模型

將 Python 與 Keras 設定為 Deep Learning

使用 Keras 構建簡單的 Deep Learning 模型

  • 創建 Keras 模型
  • 瞭解您的數據
  • 指定 Deep Learning 型號
  • 編譯模型
  • 擬合您的模型
  • 使用分類數據
  • 使用分類模型
  • 使用模型 

使用 TensorFlow 表示 Deep Learning 表示 Telecom

  • 準備數據
    • 下載數據
    • 準備訓練數據
    • 準備測試數據
    • 縮放輸入
    • 使用佔位元和變數
  • 指定網路架構
  • 使用成本函數
  • 使用優化器
  • 使用初始值設定項
  • 擬合神經網路
  • 構建圖表
    • 推理
    • 損失
    • 訓練
  • 訓練模型
    • 圖表
    • 會議
    • 火車環路
  • 評估模型
    • 構建評估圖
    • 使用 Eval Output 進行評估
  • 大規模訓練模型
  • 使用 TensorBoard 視覺化和評估模型

實踐:使用 Python 構建 Deep Learning 客戶流失預測 模型

擴展公司的能力

  • 在雲中開發模型
  • 使用 GPU 加速 Deep Learning
  • 將 Deep Learning Neural Networks 應用於 Computer Vision、語音識別和文本分析

總結和結論

Sites Published:

United Arab Emirates - Deep Learning for Telecom (with Python)

Qatar - Deep Learning for Telecom (with Python)

Egypt - Deep Learning for Telecom (with Python)

Saudi Arabia - Deep Learning for Telecom (with Python)

South Africa - Deep Learning for Telecom (with Python)

Brasil - Deep Learning for Telecom (with Python)

Canada - Deep Learning for Telecom (with Python)

中国 - 用于电信行业的深度学习(使用Python)

香港 - Deep Learning for Telecom (with Python)

澳門 - Deep Learning for Telecom (with Python)

台灣 - Deep Learning for Telecom (with Python)

USA - Deep Learning for Telecom (with Python)

Österreich - Deep Learning for Telecom (with Python)

Schweiz - Deep Learning for Telecom (with Python)

Deutschland - Deep Learning for Telecom (with Python)

Czech Republic - Deep Learning for Telecom (with Python)

Denmark - Deep Learning for Telecom (with Python)

Estonia - Deep Learning for Telecom (with Python)

Finland - Deep Learning for Telecom (with Python)

Greece - Deep Learning for Telecom (with Python)

Magyarország - Deep Learning for Telecom (with Python)

Ireland - Deep Learning for Telecom (with Python)

Luxembourg - Deep Learning for Telecom (with Python)

Latvia - Deep Learning for Telecom (with Python)

España - Deep Learning for Telecom (with Python)

Italia - Deep Learning for Telecom (with Python)

Lithuania - Deep Learning for Telecom (with Python)

Nederland - Deep Learning for Telecom (with Python)

Norway - Deep Learning for Telecom (with Python)

Portugal - Deep Learning for Telecom (with Python)

România - Deep Learning for Telecom (with Python)

Sverige - Deep Learning for Telecom (with Python)

Türkiye - Deep Learning for Telecom (with Python)

Malta - Deep Learning for Telecom (with Python)

Belgique - Deep Learning for Telecom (with Python)

France - Deep Learning for Telecom (with Python)

日本 - Deep Learning for Telecom (with Python)

Australia - Deep Learning for Telecom (with Python)

Malaysia - Deep Learning for Telecom (with Python)

New Zealand - Deep Learning for Telecom (with Python)

Philippines - Deep Learning for Telecom (with Python)

Singapore - Deep Learning for Telecom (with Python)

Thailand - Deep Learning for Telecom (with Python)

Vietnam - Deep Learning for Telecom (with Python)

India - Deep Learning for Telecom (with Python)

Argentina - Deep Learning for Telecom (with Python)

Chile - Deep Learning for Telecom (with Python)

Costa Rica - Deep Learning for Telecom (with Python)

Ecuador - Deep Learning for Telecom (with Python)

Guatemala - Deep Learning for Telecom (with Python)

Colombia - Deep Learning for Telecom (with Python)

México - Deep Learning for Telecom (with Python)

Panama - Deep Learning for Telecom (with Python)

Peru - Deep Learning for Telecom (with Python)

Uruguay - Deep Learning for Telecom (with Python)

Venezuela - Deep Learning for Telecom (with Python)

Polska - Deep Learning for Telecom (with Python)

United Kingdom - Deep Learning for Telecom (with Python)

South Korea - Deep Learning for Telecom (with Python)

Pakistan - Deep Learning for Telecom (with Python)

Sri Lanka - Deep Learning for Telecom (with Python)

Bulgaria - Deep Learning for Telecom (with Python)

Bolivia - Deep Learning for Telecom (with Python)

Indonesia - Deep Learning for Telecom (with Python)

Kazakhstan - Deep Learning for Telecom (with Python)

Moldova - Deep Learning for Telecom (with Python)

Morocco - Deep Learning for Telecom (with Python)

Tunisia - Deep Learning for Telecom (with Python)

Kuwait - Deep Learning for Telecom (with Python)

Oman - Deep Learning for Telecom (with Python)

Slovakia - Deep Learning for Telecom (with Python)

Kenya - Deep Learning for Telecom (with Python)

Nigeria - Deep Learning for Telecom (with Python)

Botswana - Deep Learning for Telecom (with Python)

Slovenia - Deep Learning for Telecom (with Python)

Croatia - Deep Learning for Telecom (with Python)

Serbia - Deep Learning for Telecom (with Python)

Bhutan - Deep Learning for Telecom (with Python)

Nepal - Deep Learning for Telecom (with Python)

Uzbekistan - Deep Learning for Telecom (with Python)