- 具有 Python 程式設計經驗
- 對電信概念有大致的瞭解
- 對統計學和數學概念有基本的瞭解
觀眾
- 開發人員
- 數據科學家
機器學習是人工智慧的一個分支,其中計算機具有無需明確程式設計即可學習的能力。
深度學習是機器學習的一個子領域,它使用基於學習數據表示和結構(如神經網路)的方法。
Python 是一種高級程式設計語言,以其清晰的語法和代碼可讀性而聞名。
在這個以講師為主導的現場培訓中,參與者將學習如何使用Python實施電信深度學習模型,同時逐步創建深度學習信用風險模型。
在培訓結束時,參與者將能夠:
- 瞭解深度學習的基本概念。
- 瞭解深度學習在電信中的應用和用途。
- 使用 Python、Keras 和 TensorFlow 創建電信深度學習模型。
- 使用 Python 構建自己的深度學習客戶流失預測模型。
課程形式
- 互動講座和討論。
- 大量的練習和練習。
- 在現場實驗室環境中實際實施。
課程定製選項
- 如需申請此課程的定製培訓,請聯繫我們進行安排。
介紹
人工智慧基礎和 Machine Learning
瞭解 Deep Learning
- Deep Learning的基本概念概述
- 區分 Machine Learning 和 Deep Learning
- Deep Learning 的應用概述
Neural Networks概述
- 什麼是 Neural Networks
- Neural Networks 與回歸模型
- 瞭解 Mathematical 基礎和學習機制
- 構建人工神經網路
- 了解神經節點和連接
- 處理神經元、層以及輸入和輸出數據
- 瞭解單層感知器
- 監督學習和無監督學習之間的區別
- 學習前饋和反饋 Neural Networks
- 瞭解前向傳播和反向傳播
- 了解長短期記憶 (LSTM)
- 在實踐中探索復發性 Neural Networks
- 在實踐中探索卷積 Neural Networks
- 改進方式 Neural Networks 學習
Telecom 中使用的 Deep Learning 技術概述
- Neural Networks
- 自然語言處理
- 圖像識別
- Speech Recognition
- 情感 分析
探索 Deep Learning 案例研究 Telecom
- 通過即時網路流量分析優化路由和服務品質
- 預測網路和設備故障、中斷、需求激增等。
- 即時分析電話以識別欺詐行為
- 分析客戶行為以確定對新產品和服務的需求
- 處理大量SMS消息以獲得見解
- Speech Recognition 用於支持電話
- 即時配置 SDN 和虛擬化網路
瞭解 Deep Learning 對 Telecom 的好處
探索不同的 Deep Learning 庫 Python
- TensorFlow
- Keras
將 Python 與 TensorFlow 設定為 Deep Learning
- 安裝 TensorFlow Python API
- 測試 TensorFlow 安裝
- 設置 TensorFlow 進行開發
- 訓練您的第一個 TensorFlow 神經網路模型
將 Python 與 Keras 設定為 Deep Learning
使用 Keras 構建簡單的 Deep Learning 模型
- 創建 Keras 模型
- 瞭解您的數據
- 指定 Deep Learning 型號
- 編譯模型
- 擬合您的模型
- 使用分類數據
- 使用分類模型
- 使用模型
使用 TensorFlow 表示 Deep Learning 表示 Telecom
- 準備數據
- 下載數據
- 準備訓練數據
- 準備測試數據
- 縮放輸入
- 使用佔位元和變數
- 指定網路架構
- 使用成本函數
- 使用優化器
- 使用初始值設定項
- 擬合神經網路
- 構建圖表
- 推理
- 損失
- 訓練
- 訓練模型
- 圖表
- 會議
- 火車環路
- 評估模型
- 構建評估圖
- 使用 Eval Output 進行評估
- 大規模訓練模型
- 使用 TensorBoard 視覺化和評估模型
實踐:使用 Python 構建 Deep Learning 客戶流失預測 模型
擴展公司的能力
- 在雲中開發模型
- 使用 GPU 加速 Deep Learning
- 將 Deep Learning Neural Networks 應用於 Computer Vision、語音識別和文本分析
總結和結論
United Arab Emirates - Deep Learning for Telecom (with Python)
Qatar - Deep Learning for Telecom (with Python)
Egypt - Deep Learning for Telecom (with Python)
Saudi Arabia - Deep Learning for Telecom (with Python)
South Africa - Deep Learning for Telecom (with Python)
Brasil - Deep Learning for Telecom (with Python)
Canada - Deep Learning for Telecom (with Python)
香港 - Deep Learning for Telecom (with Python)
澳門 - Deep Learning for Telecom (with Python)
台灣 - Deep Learning for Telecom (with Python)
USA - Deep Learning for Telecom (with Python)
Österreich - Deep Learning for Telecom (with Python)
Schweiz - Deep Learning for Telecom (with Python)
Deutschland - Deep Learning for Telecom (with Python)
Czech Republic - Deep Learning for Telecom (with Python)
Denmark - Deep Learning for Telecom (with Python)
Estonia - Deep Learning for Telecom (with Python)
Finland - Deep Learning for Telecom (with Python)
Greece - Deep Learning for Telecom (with Python)
Magyarország - Deep Learning for Telecom (with Python)
Ireland - Deep Learning for Telecom (with Python)
Luxembourg - Deep Learning for Telecom (with Python)
Latvia - Deep Learning for Telecom (with Python)
España - Deep Learning for Telecom (with Python)
Italia - Deep Learning for Telecom (with Python)
Lithuania - Deep Learning for Telecom (with Python)
Nederland - Deep Learning for Telecom (with Python)
Norway - Deep Learning for Telecom (with Python)
Portugal - Deep Learning for Telecom (with Python)
România - Deep Learning for Telecom (with Python)
Sverige - Deep Learning for Telecom (with Python)
Türkiye - Deep Learning for Telecom (with Python)
Malta - Deep Learning for Telecom (with Python)
Belgique - Deep Learning for Telecom (with Python)
France - Deep Learning for Telecom (with Python)
日本 - Deep Learning for Telecom (with Python)
Australia - Deep Learning for Telecom (with Python)
Malaysia - Deep Learning for Telecom (with Python)
New Zealand - Deep Learning for Telecom (with Python)
Philippines - Deep Learning for Telecom (with Python)
Singapore - Deep Learning for Telecom (with Python)
Thailand - Deep Learning for Telecom (with Python)
Vietnam - Deep Learning for Telecom (with Python)
India - Deep Learning for Telecom (with Python)
Argentina - Deep Learning for Telecom (with Python)
Chile - Deep Learning for Telecom (with Python)
Costa Rica - Deep Learning for Telecom (with Python)
Ecuador - Deep Learning for Telecom (with Python)
Guatemala - Deep Learning for Telecom (with Python)
Colombia - Deep Learning for Telecom (with Python)
México - Deep Learning for Telecom (with Python)
Panama - Deep Learning for Telecom (with Python)
Peru - Deep Learning for Telecom (with Python)
Uruguay - Deep Learning for Telecom (with Python)
Venezuela - Deep Learning for Telecom (with Python)
Polska - Deep Learning for Telecom (with Python)
United Kingdom - Deep Learning for Telecom (with Python)
South Korea - Deep Learning for Telecom (with Python)
Pakistan - Deep Learning for Telecom (with Python)
Sri Lanka - Deep Learning for Telecom (with Python)
Bulgaria - Deep Learning for Telecom (with Python)
Bolivia - Deep Learning for Telecom (with Python)
Indonesia - Deep Learning for Telecom (with Python)
Kazakhstan - Deep Learning for Telecom (with Python)
Moldova - Deep Learning for Telecom (with Python)
Morocco - Deep Learning for Telecom (with Python)
Tunisia - Deep Learning for Telecom (with Python)
Kuwait - Deep Learning for Telecom (with Python)
Oman - Deep Learning for Telecom (with Python)
Slovakia - Deep Learning for Telecom (with Python)
Kenya - Deep Learning for Telecom (with Python)
Nigeria - Deep Learning for Telecom (with Python)
Botswana - Deep Learning for Telecom (with Python)
Slovenia - Deep Learning for Telecom (with Python)
Croatia - Deep Learning for Telecom (with Python)
Serbia - Deep Learning for Telecom (with Python)
Bhutan - Deep Learning for Telecom (with Python)