- 基本瞭解 Machine Learning
觀眾
- 數據科學家
- 軟體工程師
Large Language Models (LLMs) 是高級類型的神經網路,旨在根據接收到的輸入來理解和生成類似人類的文本。Reinforcement Learning (RL) 是一種機器學習,其中代理通過在環境中執行操作來學習做出決策,以最大化累積獎勵。
這種以講師為主導的現場培訓(在線或遠端)面向希望全面瞭解 Large Language Models (LLMs) 和 Reinforcement Learning (RL) 的中級數據科學家。
在培訓結束時,參與者將能夠:
- 瞭解變壓器模型的元件和功能。
- 針對特定任務和應用程式優化和微調 LLM。
- 瞭解強化學習的核心原則和方法。
- 瞭解強化學習技術如何提高 LLM 的性能。
課程形式
- 互動講座和討論。
- 大量的練習和練習。
- 在現場實驗室環境中動手實施。
課程自定義選項
- 如需申請本課程的定製培訓,請聯繫我們進行安排。
Large Language Models (LLMs) 簡介
- LLM概述
- 定義和意義
- 當今人工智慧中的應用
變壓器架構
- 什麼是變壓器,它是如何工作的?
- 主要元件和特點
- 嵌入和位置編碼
- 多頭注意力
- 前饋神經網路
- 歸一化和殘差連接
變壓器型號
- 自注意力機制
- 編碼器-解碼器架構
- 位置嵌入
- BERT(來自 Transformer 的雙向編碼器表示)
- GPT(產生式預訓練轉換器)
性能優化和陷阱
- 上下文長度
- 曼巴和狀態空間模型
- 閃光注意力
- 稀疏變壓器
- 視覺變壓器
- 量化的重要性
改進變壓器
- 檢索增強文本生成
- 模型混合
- 思想之樹
微調
- 低秩適應理論
- 使用 QLora 進行微調
LLM 中的縮放定律和優化
- LLM擴展法的重要性
- 數據和模型大小縮放
- 計算擴展
- 參數效率縮放
優化
- 模型大小、數據大小、計算預算和推理需求之間的關係
- 優化 LLM 的性能和效率
- 用於訓練和微調 LLM 的最佳實踐和工具
訓練和微調 LLM
- 從頭開始培訓 LLM 的步驟和挑戰
- 數據採集與維護
- 大規模數據、CPU 和記憶體要求
- 優化挑戰
- 開源 LLM 的前景
Reinforcement Learning (RL) 的基礎知識
- Reinforcement Learning 簡介
- 通過積極強化學習
- 定義和核心概念
- 瑪律可夫決策過程 (MDP)
- 動態規劃
- 蒙特卡羅方法
- 時差學習
深 Reinforcement Learning
- 深度 Q 網路 (DQN)
- 近端策略優化 (PPO)
- Element秒,共 Reinforcement Learning
LLM 和 Reinforcement Learning 的集成
- 將 LLM 與 Reinforcement Learning 相結合
- RL在LLM中的使用方式
- Reinforcement Learning 人工反饋 (RLHF)
- RLHF的替代品
案例研究和應用
- 實際應用
- 成功案例和挑戰
高級主題
- 先進技術
- 高級優化方法
- 尖端研發
摘要和後續步驟
United Arab Emirates - Large Language Models (LLMs) and Reinforcement Learning (RL)
Qatar - Large Language Models (LLMs) and Reinforcement Learning (RL)
Egypt - Large Language Models (LLMs) and Reinforcement Learning (RL)
Saudi Arabia - Large Language Models (LLMs) and Reinforcement Learning (RL)
South Africa - Large Language Models (LLMs) and Reinforcement Learning (RL)
Brasil - Large Language Models (LLMs) and Reinforcement Learning (RL)
Canada - Large Language Models (LLMs) and Reinforcement Learning (RL)
中国 - Large Language Models (LLMs) and Reinforcement Learning (RL)
香港 - Large Language Models (LLMs) and Reinforcement Learning (RL)
澳門 - Large Language Models (LLMs) and Reinforcement Learning (RL)
台灣 - Large Language Models (LLMs) and Reinforcement Learning (RL)
USA - Large Language Models (LLMs) and Reinforcement Learning (RL)
Österreich - Large Language Models (LLMs) and Reinforcement Learning (RL)
Schweiz - Large Language Models (LLMs) and Reinforcement Learning (RL)
Deutschland - Large Language Models (LLMs) and Reinforcement Learning (RL)
Czech Republic - Large Language Models (LLMs) and Reinforcement Learning (RL)
Denmark - Large Language Models (LLMs) and Reinforcement Learning (RL)
Estonia - Large Language Models (LLMs) and Reinforcement Learning (RL)
Finland - Large Language Models (LLMs) and Reinforcement Learning (RL)
Greece - Large Language Models (LLMs) and Reinforcement Learning (RL)
Magyarország - Large Language Models (LLMs) and Reinforcement Learning (RL)
Ireland - Large Language Models (LLMs) and Reinforcement Learning (RL)
Luxembourg - Large Language Models (LLMs) and Reinforcement Learning (RL)
Latvia - Large Language Models (LLMs) and Reinforcement Learning (RL)
España - Large Language Models (LLMs) and Reinforcement Learning (RL)
Italia - Large Language Models (LLMs) and Reinforcement Learning (RL)
Lithuania - Large Language Models (LLMs) and Reinforcement Learning (RL)
Nederland - Large Language Models (LLMs) and Reinforcement Learning (RL)
Norway - Large Language Models (LLMs) and Reinforcement Learning (RL)
Portugal - Large Language Models (LLMs) and Reinforcement Learning (RL)
România - Large Language Models (LLMs) and Reinforcement Learning (RL)
Sverige - Large Language Models (LLMs) and Reinforcement Learning (RL)
Türkiye - Large Language Models (LLMs) and Reinforcement Learning (RL)
Malta - Large Language Models (LLMs) and Reinforcement Learning (RL)
Belgique - Large Language Models (LLMs) and Reinforcement Learning (RL)
France - Large Language Models (LLMs) and Reinforcement Learning (RL)
日本 - Large Language Models (LLMs) and Reinforcement Learning (RL)
Australia - Large Language Models (LLMs) and Reinforcement Learning (RL)
Malaysia - Large Language Models (LLMs) and Reinforcement Learning (RL)
New Zealand - Large Language Models (LLMs) and Reinforcement Learning (RL)
Philippines - Large Language Models (LLMs) and Reinforcement Learning (RL)
Singapore - Large Language Models (LLMs) and Reinforcement Learning (RL)
Thailand - Large Language Models (LLMs) and Reinforcement Learning (RL)
Vietnam - Large Language Models (LLMs) and Reinforcement Learning (RL)
India - Large Language Models (LLMs) and Reinforcement Learning (RL)
Argentina - Large Language Models (LLMs) and Reinforcement Learning (RL)
Chile - Large Language Models (LLMs) and Reinforcement Learning (RL)
Costa Rica - Large Language Models (LLMs) and Reinforcement Learning (RL)
Ecuador - Large Language Models (LLMs) and Reinforcement Learning (RL)
Guatemala - Large Language Models (LLMs) and Reinforcement Learning (RL)
Colombia - Large Language Models (LLMs) and Reinforcement Learning (RL)
México - Large Language Models (LLMs) and Reinforcement Learning (RL)
Panama - Large Language Models (LLMs) and Reinforcement Learning (RL)
Peru - Large Language Models (LLMs) and Reinforcement Learning (RL)
Uruguay - Large Language Models (LLMs) and Reinforcement Learning (RL)
Venezuela - Large Language Models (LLMs) and Reinforcement Learning (RL)
Polska - Large Language Models (LLMs) and Reinforcement Learning (RL)
United Kingdom - Large Language Models (LLMs) and Reinforcement Learning (RL)
South Korea - Large Language Models (LLMs) and Reinforcement Learning (RL)
Pakistan - Large Language Models (LLMs) and Reinforcement Learning (RL)
Sri Lanka - Large Language Models (LLMs) and Reinforcement Learning (RL)
Bulgaria - Large Language Models (LLMs) and Reinforcement Learning (RL)
Bolivia - Large Language Models (LLMs) and Reinforcement Learning (RL)
Indonesia - Large Language Models (LLMs) and Reinforcement Learning (RL)
Kazakhstan - Large Language Models (LLMs) and Reinforcement Learning (RL)
Moldova - Large Language Models (LLMs) and Reinforcement Learning (RL)
Morocco - Large Language Models (LLMs) and Reinforcement Learning (RL)
Tunisia - Large Language Models (LLMs) and Reinforcement Learning (RL)
Kuwait - Large Language Models (LLMs) and Reinforcement Learning (RL)
Oman - Large Language Models (LLMs) and Reinforcement Learning (RL)
Slovakia - Large Language Models (LLMs) and Reinforcement Learning (RL)
Kenya - Large Language Models (LLMs) and Reinforcement Learning (RL)
Nigeria - Large Language Models (LLMs) and Reinforcement Learning (RL)
Botswana - Large Language Models (LLMs) and Reinforcement Learning (RL)
Slovenia - Large Language Models (LLMs) and Reinforcement Learning (RL)
Croatia - Large Language Models (LLMs) and Reinforcement Learning (RL)
Serbia - Large Language Models (LLMs) and Reinforcement Learning (RL)
Bhutan - Large Language Models (LLMs) and Reinforcement Learning (RL)
Nepal - Large Language Models (LLMs) and Reinforcement Learning (RL)
Uzbekistan - Large Language Models (LLMs) and Reinforcement Learning (RL)