Course Code: llmsrl
Duration: 21 hours
Prerequisites:
  • 基本瞭解 Machine Learning

觀眾

  • 數據科學家
  • 軟體工程師
Overview:

Large Language Models (LLMs) 是高級類型的神經網路,旨在根據接收到的輸入來理解和生成類似人類的文本。Reinforcement Learning (RL) 是一種機器學習,其中代理通過在環境中執行操作來學習做出決策,以最大化累積獎勵。

這種以講師為主導的現場培訓(在線或遠端)面向希望全面瞭解 Large Language Models (LLMs) 和 Reinforcement Learning (RL) 的中級數據科學家。

在培訓結束時,參與者將能夠:

  • 瞭解變壓器模型的元件和功能。
  • 針對特定任務和應用程式優化和微調 LLM。
  • 瞭解強化學習的核心原則和方法。
  • 瞭解強化學習技術如何提高 LLM 的性能。

課程形式

  • 互動講座和討論。
  • 大量的練習和練習。
  • 在現場實驗室環境中動手實施。

課程自定義選項

  • 如需申請本課程的定製培訓,請聯繫我們進行安排。
Course Outline:

Large Language Models (LLMs) 簡介

  • LLM概述
  • 定義和意義
  • 當今人工智慧中的應用

變壓器架構

  • 什麼是變壓器,它是如何工作的?
  • 主要元件和特點
  • 嵌入和位置編碼
  • 多頭注意力
  • 前饋神經網路
  • 歸一化和殘差連接

變壓器型號

  • 自注意力機制
  • 編碼器-解碼器架構
  • 位置嵌入
  • BERT(來自 Transformer 的雙向編碼器表示)
  • GPT(產生式預訓練轉換器)

性能優化和陷阱

  • 上下文長度
  • 曼巴和狀態空間模型
  • 閃光注意力
  • 稀疏變壓器
  • 視覺變壓器
  • 量化的重要性

改進變壓器

  • 檢索增強文本生成
  • 模型混合
  • 思想之樹

微調

  • 低秩適應理論
  • 使用 QLora 進行微調

LLM 中的縮放定律和優化

  • LLM擴展法的重要性
  • 數據和模型大小縮放
  • 計算擴展
  • 參數效率縮放

優化

  • 模型大小、數據大小、計算預算和推理需求之間的關係
  • 優化 LLM 的性能和效率
  • 用於訓練和微調 LLM 的最佳實踐和工具

訓練和微調 LLM

  • 從頭開始培訓 LLM 的步驟和挑戰
  • 數據採集與維護
  • 大規模數據、CPU 和記憶體要求
  • 優化挑戰
  • 開源 LLM 的前景

Reinforcement Learning (RL) 的基礎知識

  • Reinforcement Learning 簡介
  • 通過積極強化學習
  • 定義和核心概念
  • 瑪律可夫決策過程 (MDP)
  • 動態規劃
  • 蒙特卡羅方法
  • 時差學習

深 Reinforcement Learning

  • 深度 Q 網路 (DQN)
  • 近端策略優化 (PPO)
  • Element秒,共 Reinforcement Learning

LLM 和 Reinforcement Learning 的集成

  • 將 LLM 與 Reinforcement Learning 相結合
  • RL在LLM中的使用方式
  • Reinforcement Learning 人工反饋 (RLHF)
  • RLHF的替代品

案例研究和應用

  • 實際應用
  • 成功案例和挑戰

高級主題

  • 先進技術
  • 高級優化方法
  • 尖端研發

摘要和後續步驟

Sites Published:

United Arab Emirates - Large Language Models (LLMs) and Reinforcement Learning (RL)

Qatar - Large Language Models (LLMs) and Reinforcement Learning (RL)

Egypt - Large Language Models (LLMs) and Reinforcement Learning (RL)

Saudi Arabia - Large Language Models (LLMs) and Reinforcement Learning (RL)

South Africa - Large Language Models (LLMs) and Reinforcement Learning (RL)

Brasil - Large Language Models (LLMs) and Reinforcement Learning (RL)

Canada - Large Language Models (LLMs) and Reinforcement Learning (RL)

中国 - Large Language Models (LLMs) and Reinforcement Learning (RL)

香港 - Large Language Models (LLMs) and Reinforcement Learning (RL)

澳門 - Large Language Models (LLMs) and Reinforcement Learning (RL)

台灣 - Large Language Models (LLMs) and Reinforcement Learning (RL)

USA - Large Language Models (LLMs) and Reinforcement Learning (RL)

Österreich - Large Language Models (LLMs) and Reinforcement Learning (RL)

Schweiz - Large Language Models (LLMs) and Reinforcement Learning (RL)

Deutschland - Large Language Models (LLMs) and Reinforcement Learning (RL)

Czech Republic - Large Language Models (LLMs) and Reinforcement Learning (RL)

Denmark - Large Language Models (LLMs) and Reinforcement Learning (RL)

Estonia - Large Language Models (LLMs) and Reinforcement Learning (RL)

Finland - Large Language Models (LLMs) and Reinforcement Learning (RL)

Greece - Large Language Models (LLMs) and Reinforcement Learning (RL)

Magyarország - Large Language Models (LLMs) and Reinforcement Learning (RL)

Ireland - Large Language Models (LLMs) and Reinforcement Learning (RL)

Luxembourg - Large Language Models (LLMs) and Reinforcement Learning (RL)

Latvia - Large Language Models (LLMs) and Reinforcement Learning (RL)

España - Large Language Models (LLMs) and Reinforcement Learning (RL)

Italia - Large Language Models (LLMs) and Reinforcement Learning (RL)

Lithuania - Large Language Models (LLMs) and Reinforcement Learning (RL)

Nederland - Large Language Models (LLMs) and Reinforcement Learning (RL)

Norway - Large Language Models (LLMs) and Reinforcement Learning (RL)

Portugal - Large Language Models (LLMs) and Reinforcement Learning (RL)

România - Large Language Models (LLMs) and Reinforcement Learning (RL)

Sverige - Large Language Models (LLMs) and Reinforcement Learning (RL)

Türkiye - Large Language Models (LLMs) and Reinforcement Learning (RL)

Malta - Large Language Models (LLMs) and Reinforcement Learning (RL)

Belgique - Large Language Models (LLMs) and Reinforcement Learning (RL)

France - Large Language Models (LLMs) and Reinforcement Learning (RL)

日本 - Large Language Models (LLMs) and Reinforcement Learning (RL)

Australia - Large Language Models (LLMs) and Reinforcement Learning (RL)

Malaysia - Large Language Models (LLMs) and Reinforcement Learning (RL)

New Zealand - Large Language Models (LLMs) and Reinforcement Learning (RL)

Philippines - Large Language Models (LLMs) and Reinforcement Learning (RL)

Singapore - Large Language Models (LLMs) and Reinforcement Learning (RL)

Thailand - Large Language Models (LLMs) and Reinforcement Learning (RL)

Vietnam - Large Language Models (LLMs) and Reinforcement Learning (RL)

India - Large Language Models (LLMs) and Reinforcement Learning (RL)

Argentina - Large Language Models (LLMs) and Reinforcement Learning (RL)

Chile - Large Language Models (LLMs) and Reinforcement Learning (RL)

Costa Rica - Large Language Models (LLMs) and Reinforcement Learning (RL)

Ecuador - Large Language Models (LLMs) and Reinforcement Learning (RL)

Guatemala - Large Language Models (LLMs) and Reinforcement Learning (RL)

Colombia - Large Language Models (LLMs) and Reinforcement Learning (RL)

México - Large Language Models (LLMs) and Reinforcement Learning (RL)

Panama - Large Language Models (LLMs) and Reinforcement Learning (RL)

Peru - Large Language Models (LLMs) and Reinforcement Learning (RL)

Uruguay - Large Language Models (LLMs) and Reinforcement Learning (RL)

Venezuela - Large Language Models (LLMs) and Reinforcement Learning (RL)

Polska - Large Language Models (LLMs) and Reinforcement Learning (RL)

United Kingdom - Large Language Models (LLMs) and Reinforcement Learning (RL)

South Korea - Large Language Models (LLMs) and Reinforcement Learning (RL)

Pakistan - Large Language Models (LLMs) and Reinforcement Learning (RL)

Sri Lanka - Large Language Models (LLMs) and Reinforcement Learning (RL)

Bulgaria - Large Language Models (LLMs) and Reinforcement Learning (RL)

Bolivia - Large Language Models (LLMs) and Reinforcement Learning (RL)

Indonesia - Large Language Models (LLMs) and Reinforcement Learning (RL)

Kazakhstan - Large Language Models (LLMs) and Reinforcement Learning (RL)

Moldova - Large Language Models (LLMs) and Reinforcement Learning (RL)

Morocco - Large Language Models (LLMs) and Reinforcement Learning (RL)

Tunisia - Large Language Models (LLMs) and Reinforcement Learning (RL)

Kuwait - Large Language Models (LLMs) and Reinforcement Learning (RL)

Oman - Large Language Models (LLMs) and Reinforcement Learning (RL)

Slovakia - Large Language Models (LLMs) and Reinforcement Learning (RL)

Kenya - Large Language Models (LLMs) and Reinforcement Learning (RL)

Nigeria - Large Language Models (LLMs) and Reinforcement Learning (RL)

Botswana - Large Language Models (LLMs) and Reinforcement Learning (RL)

Slovenia - Large Language Models (LLMs) and Reinforcement Learning (RL)

Croatia - Large Language Models (LLMs) and Reinforcement Learning (RL)

Serbia - Large Language Models (LLMs) and Reinforcement Learning (RL)

Bhutan - Large Language Models (LLMs) and Reinforcement Learning (RL)

Nepal - Large Language Models (LLMs) and Reinforcement Learning (RL)

Uzbekistan - Large Language Models (LLMs) and Reinforcement Learning (RL)