Course Code: fliot
Duration: 14 hours
Prerequisites:
  • 物聯網或邊緣計算開發經驗
  • 對 AI 和機器學習有基本的瞭解
  • 熟悉分散式系統和網路協定

觀眾

  • 物聯網工程師
  • 邊緣計算專家
  • AI 開發人員
Overview:

Federated Learning 直接在IoT設備和邊緣計算平臺上實現去中心化 AI 模型訓練。本課程探討了 Federated Learning 與 IoT 和邊緣環境的集成,重點是減少延遲、增強即時決策以及確保分散式系統中的數據隱私。

這種講師指導的現場培訓(在線或現場)面向希望應用 Federated Learning 來優化IoT和邊緣計算解決方案的中級專業人員。

在本次培訓結束時,參與者將能夠:

  • 瞭解 Federated Learning 在IoT和邊緣計算中的原理和優勢。
  • 在 IoT 設備上實施 Federated Learning 模型以進行去中心化的 AI 處理。
  • 減少延遲並改進邊緣計算環境中的實時決策。
  • 解決與IoT系統中的數據隱私和網路限制相關的挑戰。

課程形式

  • 互動講座和討論。
  • 大量的練習和練習。
  • 在即時實驗室環境中動手實施。

課程自定義選項

  • 要申請本課程的定製培訓,請聯繫我們進行安排。
Course Outline:

IoT 中的 Federated Learning 簡介和 Edge Computing

  • Federated Learning 概述及其在 IoT 中的應用
  • 將 Federated Learning 與邊緣計算整合的主要挑戰
  • 分散式 AI 在 IoT 環境中的優勢

Federated Learning 物聯網設備技術

  • 在 IoT 設備上部署 Federated Learning 模型
  • 處理非 IID 數據和有限的計算資源
  • 優化IoT設備與中央伺服器之間的通信

即時決策和減少延遲

  • 增強邊緣環境中的實時處理能力
  • 在 Federated Learning 系統中減少延遲的技術
  • 實施邊緣 AI 模型以實現快速可靠的決策

確保聯合IoT系統中的數據隱私

  • 去中心化 AI 模型中的數據隱私技術
  • 管理跨IoT設備的數據共享和協作
  • 遵守IoT環境中的數據隱私法規

案例研究和實際應用

  • 在 IoT 中成功實施 Federated Learning
  • 使用真實世界IoT數據集進行實踐練習
  • 探索 Federated Learning 物聯網和邊緣計算的未來趨勢

總結和後續步驟

Sites Published:

United Arab Emirates - Federated Learning in IoT and Edge Computing

Qatar - Federated Learning in IoT and Edge Computing

Egypt - Federated Learning in IoT and Edge Computing

Saudi Arabia - Federated Learning in IoT and Edge Computing

South Africa - Federated Learning in IoT and Edge Computing

Brasil - Federated Learning in IoT and Edge Computing

Canada - Federated Learning in IoT and Edge Computing

中国 - Federated Learning in IoT and Edge Computing

香港 - Federated Learning in IoT and Edge Computing

澳門 - Federated Learning in IoT and Edge Computing

台灣 - Federated Learning in IoT and Edge Computing

USA - Federated Learning in IoT and Edge Computing

Österreich - Federated Learning in IoT and Edge Computing

Schweiz - Federated Learning in IoT and Edge Computing

Deutschland - Federated Learning in IoT and Edge Computing

Czech Republic - Federated Learning in IoT and Edge Computing

Denmark - Federated Learning in IoT and Edge Computing

Estonia - Federated Learning in IoT and Edge Computing

Finland - Federated Learning in IoT and Edge Computing

Greece - Federated Learning in IoT and Edge Computing

Magyarország - Federated Learning in IoT and Edge Computing

Ireland - Federated Learning in IoT and Edge Computing

Luxembourg - Federated Learning in IoT and Edge Computing

Latvia - Federated Learning in IoT and Edge Computing

España - Federated Learning in IoT and Edge Computing

Italia - Federated Learning in IoT and Edge Computing

Lithuania - Federated Learning in IoT and Edge Computing

Nederland - Federated Learning in IoT and Edge Computing

Norway - Federated Learning in IoT and Edge Computing

Portugal - Federated Learning in IoT and Edge Computing

România - Federated Learning in IoT and Edge Computing

Sverige - Federated Learning in IoT and Edge Computing

Türkiye - Federated Learning in IoT and Edge Computing

Malta - Federated Learning in IoT and Edge Computing

Belgique - Federated Learning in IoT and Edge Computing

France - Federated Learning in IoT and Edge Computing

日本 - Federated Learning in IoT and Edge Computing

Australia - Federated Learning in IoT and Edge Computing

Malaysia - Federated Learning in IoT and Edge Computing

New Zealand - Federated Learning in IoT and Edge Computing

Philippines - Federated Learning in IoT and Edge Computing

Singapore - Federated Learning in IoT and Edge Computing

Thailand - Federated Learning in IoT and Edge Computing

Vietnam - Federated Learning in IoT and Edge Computing

India - Federated Learning in IoT and Edge Computing

Argentina - Federated Learning in IoT and Edge Computing

Chile - Federated Learning in IoT and Edge Computing

Costa Rica - Federated Learning in IoT and Edge Computing

Ecuador - Federated Learning in IoT and Edge Computing

Guatemala - Federated Learning in IoT and Edge Computing

Colombia - Federated Learning in IoT and Edge Computing

México - Federated Learning in IoT and Edge Computing

Panama - Federated Learning in IoT and Edge Computing

Peru - Federated Learning in IoT and Edge Computing

Uruguay - Federated Learning in IoT and Edge Computing

Venezuela - Federated Learning in IoT and Edge Computing

Polska - Federated Learning in IoT and Edge Computing

United Kingdom - Federated Learning in IoT and Edge Computing

South Korea - Federated Learning in IoT and Edge Computing

Pakistan - Federated Learning in IoT and Edge Computing

Sri Lanka - Federated Learning in IoT and Edge Computing

Bulgaria - Federated Learning in IoT and Edge Computing

Bolivia - Federated Learning in IoT and Edge Computing

Indonesia - Federated Learning in IoT and Edge Computing

Kazakhstan - Federated Learning in IoT and Edge Computing

Moldova - Federated Learning in IoT and Edge Computing

Morocco - Federated Learning in IoT and Edge Computing

Tunisia - Federated Learning in IoT and Edge Computing

Kuwait - Federated Learning in IoT and Edge Computing

Oman - Federated Learning in IoT and Edge Computing

Slovakia - Federated Learning in IoT and Edge Computing

Kenya - Federated Learning in IoT and Edge Computing

Nigeria - Federated Learning in IoT and Edge Computing

Botswana - Federated Learning in IoT and Edge Computing

Slovenia - Federated Learning in IoT and Edge Computing

Croatia - Federated Learning in IoT and Edge Computing

Serbia - Federated Learning in IoT and Edge Computing

Bhutan - Federated Learning in IoT and Edge Computing

Nepal - Federated Learning in IoT and Edge Computing

Uzbekistan - Federated Learning in IoT and Edge Computing