Course Code: mctinyml
Duration: 21 hours
Prerequisites:
  • 嵌入式系統編程經驗
  • 熟悉C/C++或C/Python編程
  • 對機器學習概念有基本了解
  • 了解微控制器硬件及外圍設備

受眾

  • 嵌入式系統工程師
  • 人工智慧開發人員
Overview:

TinyML使AI模型能夠在微控制器和邊緣設備上高效運行,並具有低功耗。

這門由講師主導的現場培訓(在線或現場)旨在對希望使用TensorFlow Lite和Edge Impulse在微控制器上部署機器學習模型的中級嵌入式系統工程師和AI開發人員。

完成本次培訓後,參與者將能夠:

  • 了解TinyML的基本原理及其對邊緣AI應用程序的好處。
  • 為TinyML項目設置開發環境。
  • 在低功耗微控制器上訓練、優化和部署AI模型。
  • 使用TensorFlow Lite和Edge Impulse實現實際的TinyML應用程序。
  • 對AI模型進行功耗效率和內存限制的優化。

課程格式

  • 互動講座和討論。
  • 很多練習和實踐。
  • 在實時實驗室環境中進行動手實施。

課程定制選項

  • 要要求這門課的定制培訓,請聯繫我們安排。
Course Outline:

介绍TinyML和Edge AI

  • 什么是TinyML?
  • 微控制器上AI的优势和挑战
  • TensorFlow Lite和Edge Impulse的TinyML工具概述
  • 在物联网和现实世界应用中对TinyML的用例

设置TinyML开发环境

  • 安装和配置Arduino IDE
  • 微控制器的TensorFlow Lite简介
  • 使用Edge Impulse Studio进行TinyML开发
  • 连接和测试AI应用的微控制器

构建和训练Machine Learning模型

  • 了解TinyML工作流程
  • 收集和预处理传感器数据
  • 嵌入式AI的机器学习模型训练
  • 针对低功耗和实时处理优化模型

在Microcontroller上部署AI模型

  • 将AI模型转换为TensorFlow Lite格式
  • 在微控制器上闪存和运行模型
  • 验证和调试TinyML实现

优化TinyML以提高性能和效率

  • 模型量化和压缩的技术
  • 边缘AI的电源管理策略
  • 嵌入式AI中的内存和计算约束

TinyML的实际应用

  • 使用加速度计数据进行手势识别
  • 音频分类和关键字检测
  • 用于预测性维护的异常检测

TinyML中的安全性和未来趋势

  • 确保TinyML应用中的数据隐私和安全
  • 微控制器上联邦学习的挑战
  • TinyML中出现的新兴研究和进展

总结和结论

Sites Published:

United Arab Emirates - Deploying AI on Microcontrollers with TinyML

Qatar - Deploying AI on Microcontrollers with TinyML

Egypt - Deploying AI on Microcontrollers with TinyML

Saudi Arabia - Deploying AI on Microcontrollers with TinyML

South Africa - Deploying AI on Microcontrollers with TinyML

Brasil - Deploying AI on Microcontrollers with TinyML

Canada - Deploying AI on Microcontrollers with TinyML

中国 - Deploying AI on Microcontrollers with TinyML

香港 - Deploying AI on Microcontrollers with TinyML

澳門 - Deploying AI on Microcontrollers with TinyML

台灣 - Deploying AI on Microcontrollers with TinyML

USA - Deploying AI on Microcontrollers with TinyML

Österreich - Deploying AI on Microcontrollers with TinyML

Schweiz - Deploying AI on Microcontrollers with TinyML

Deutschland - Deploying AI on Microcontrollers with TinyML

Czech Republic - Deploying AI on Microcontrollers with TinyML

Denmark - Deploying AI on Microcontrollers with TinyML

Estonia - Deploying AI on Microcontrollers with TinyML

Finland - Deploying AI on Microcontrollers with TinyML

Greece - Deploying AI on Microcontrollers with TinyML

Magyarország - Deploying AI on Microcontrollers with TinyML

Ireland - Deploying AI on Microcontrollers with TinyML

Luxembourg - Deploying AI on Microcontrollers with TinyML

Latvia - Deploying AI on Microcontrollers with TinyML

España - Deploying AI on Microcontrollers with TinyML

Italia - Deploying AI on Microcontrollers with TinyML

Lithuania - Deploying AI on Microcontrollers with TinyML

Nederland - Deploying AI on Microcontrollers with TinyML

Norway - Deploying AI on Microcontrollers with TinyML

Portugal - Deploying AI on Microcontrollers with TinyML

România - Deploying AI on Microcontrollers with TinyML

Sverige - Deploying AI on Microcontrollers with TinyML

Türkiye - Deploying AI on Microcontrollers with TinyML

Malta - Deploying AI on Microcontrollers with TinyML

Belgique - Deploying AI on Microcontrollers with TinyML

France - Deploying AI on Microcontrollers with TinyML

日本 - Deploying AI on Microcontrollers with TinyML

Australia - Deploying AI on Microcontrollers with TinyML

Malaysia - Deploying AI on Microcontrollers with TinyML

New Zealand - Deploying AI on Microcontrollers with TinyML

Philippines - Deploying AI on Microcontrollers with TinyML

Singapore - Deploying AI on Microcontrollers with TinyML

Thailand - Deploying AI on Microcontrollers with TinyML

Vietnam - Deploying AI on Microcontrollers with TinyML

India - Deploying AI on Microcontrollers with TinyML

Argentina - Deploying AI on Microcontrollers with TinyML

Chile - Deploying AI on Microcontrollers with TinyML

Costa Rica - Deploying AI on Microcontrollers with TinyML

Ecuador - Deploying AI on Microcontrollers with TinyML

Guatemala - Deploying AI on Microcontrollers with TinyML

Colombia - Deploying AI on Microcontrollers with TinyML

México - Deploying AI on Microcontrollers with TinyML

Panama - Deploying AI on Microcontrollers with TinyML

Peru - Deploying AI on Microcontrollers with TinyML

Uruguay - Deploying AI on Microcontrollers with TinyML

Venezuela - Deploying AI on Microcontrollers with TinyML

Polska - Deploying AI on Microcontrollers with TinyML

United Kingdom - Deploying AI on Microcontrollers with TinyML

South Korea - Deploying AI on Microcontrollers with TinyML

Pakistan - Deploying AI on Microcontrollers with TinyML

Sri Lanka - Deploying AI on Microcontrollers with TinyML

Bulgaria - Deploying AI on Microcontrollers with TinyML

Bolivia - Deploying AI on Microcontrollers with TinyML

Indonesia - Deploying AI on Microcontrollers with TinyML

Kazakhstan - Deploying AI on Microcontrollers with TinyML

Moldova - Deploying AI on Microcontrollers with TinyML

Morocco - Deploying AI on Microcontrollers with TinyML

Tunisia - Deploying AI on Microcontrollers with TinyML

Kuwait - Deploying AI on Microcontrollers with TinyML

Oman - Deploying AI on Microcontrollers with TinyML

Slovakia - Deploying AI on Microcontrollers with TinyML

Kenya - Deploying AI on Microcontrollers with TinyML

Nigeria - Deploying AI on Microcontrollers with TinyML

Botswana - Deploying AI on Microcontrollers with TinyML

Slovenia - Deploying AI on Microcontrollers with TinyML

Croatia - Deploying AI on Microcontrollers with TinyML

Serbia - Deploying AI on Microcontrollers with TinyML

Bhutan - Deploying AI on Microcontrollers with TinyML

Nepal - Deploying AI on Microcontrollers with TinyML

Uzbekistan - Deploying AI on Microcontrollers with TinyML