Course Code: rprogda
Duration: 14 hours
Overview:

This course is part of the Data Scientist skill set (Domain: Data and Technology)

Course Outline:

Introduction and preliminaries

  • Making R more friendly, R and available GUIs
  • Rstudio
  • Related software and documentation
  • R and statistics
  • Using R interactively
  • An introductory session
  • Getting help with functions and features
  • R commands, case sensitivity, etc.
  • Recall and correction of previous commands
  • Executing commands from or diverting output to a file
  • Data permanency and removing objects

Simple manipulations; numbers and vectors

  • Vectors and assignment
  • Vector arithmetic
  • Generating regular sequences
  • Logical vectors
  • Missing values
  • Character vectors
  • Index vectors; selecting and modifying subsets of a data set
  • Other types of objects

Objects, their modes and attributes

  • Intrinsic attributes: mode and length
  • Changing the length of an object
  • Getting and setting attributes
  • The class of an object

Arrays and matrices

  • Arrays
  • Array indexing. Subsections of an array
  • Index matrices
  • The array() function
  • The outer product of two arrays
  • Generalized transpose of an array
  • Matrix facilities
    • Matrix multiplication
    • Linear equations and inversion
    • Eigenvalues and eigenvectors
    • Singular value decomposition and determinants
    • Least squares fitting and the QR decomposition
  • Forming partitioned matrices, cbind() and rbind()
  • The concatenation function, (), with arrays
  • Frequency tables from factors

Lists and data frames

  • Lists
  • Constructing and modifying lists
    • Concatenating lists
  • Data frames
    • Making data frames
    • attach() and detach()
    • Working with data frames
    • Attaching arbitrary lists
    • Managing the search path

Data manipulation

  • Selecting, subsetting observations and variables          
  • Filtering, grouping
  • Recoding, transformations
  • Aggregation, combining data sets
  • Character manipulation, stringr package

Reading data

  • Txt files
  • CSV files
  • XLS, XLSX files
  • SPSS, SAS, Stata,… and other formats data
  • Exporting data to txt, csv and other formats
  • Accessing data from databases using SQL language

Probability distributions

  • R as a set of statistical tables
  • Examining the distribution of a set of data
  • One- and two-sample tests

Grouping, loops and conditional execution

  • Grouped expressions
  • Control statements
    • Conditional execution: if statements
    • Repetitive execution: for loops, repeat and while

Writing your own functions

  • Simple examples
  • Defining new binary operators
  • Named arguments and defaults
  • The '...' argument
  • Assignments within functions
  • More advanced examples
    • Efficiency factors in block designs
    • Dropping all names in a printed array
    • Recursive numerical integration
  • Scope
  • Customizing the environment
  • Classes, generic functions and object orientation

Graphical procedures

  • High-level plotting commands
    • The plot() function
    • Displaying multivariate data
    • Display graphics
    • Arguments to high-level plotting functions
  • Basic visualisation graphs
  • Multivariate relations with lattice and ggplot package
  • Using graphics parameters
  • Graphics parameters list

Automated and interactive reporting

  • Combining output from R with text
Sites Published:

United Arab Emirates - R Programming for Data Analysis

Qatar - R Programming for Data Analysis

Egypt - R Programming for Data Analysis

Saudi Arabia - R Programming for Data Analysis

South Africa - R Programming for Data Analysis

Brasil - R Programming for Data Analysis

Canada - R Programming for Data Analysis

中国 - R Programming for Data Analysis

香港 - R Programming for Data Analysis

澳門 - R Programming for Data Analysis

台灣 - R Programming for Data Analysis

USA - R Programming for Data Analysis

Österreich - R Programming for Data Analysis

Schweiz - R Programming for Data Analysis

Deutschland - R Programming for Data Analysis

Czech Republic - R Programming for Data Analysis

Denmark - R Programming for Data Analysis

Estonia - R Programming for Data Analysis

Finland - R Programming for Data Analysis

Greece - R Programming for Data Analysis

Magyarország - R Programming for Data Analysis

Ireland - R Programming for Data Analysis

Luxembourg - R Programming for Data Analysis

Latvia - R Programming for Data Analysis

España - Programación R para el Análisis de Datos

Italia - R Programming for Data Analysis

Lithuania - R Programming for Data Analysis

Nederland - R Programming for Data Analysis

Norway - R Programming for Data Analysis

Portugal - R Programming for Data Analysis

România - R Programming for Data Analysis

Sverige - R Programming for Data Analysis

Türkiye - R Programming for Data Analysis

Malta - R Programming for Data Analysis

Belgique - R Programming for Data Analysis

France - R Programming for Data Analysis

日本 - R Programming for Data Analysis

Australia - R Programming for Data Analysis

Malaysia - R Programming for Data Analysis

New Zealand - R Programming for Data Analysis

Philippines - R Programming for Data Analysis

Singapore - R Programming for Data Analysis

Thailand - R Programming for Data Analysis

Vietnam - R Programming for Data Analysis

India - R Programming for Data Analysis

Argentina - Programación R para el Análisis de Datos

Chile - Programación R para el Análisis de Datos

Costa Rica - Programación R para el Análisis de Datos

Ecuador - Programación R para el Análisis de Datos

Guatemala - Programación R para el Análisis de Datos

Colombia - Programación R para el Análisis de Datos

México - Programación R para el Análisis de Datos

Panama - Programación R para el Análisis de Datos

Peru - Programación R para el Análisis de Datos

Uruguay - Programación R para el Análisis de Datos

Venezuela - Programación R para el Análisis de Datos

Polska - R Programming for Data Analysis

United Kingdom - R Programming for Data Analysis

South Korea - R Programming for Data Analysis

Pakistan - R Programming for Data Analysis

Sri Lanka - R Programming for Data Analysis

Bulgaria - R Programming for Data Analysis

Bolivia - Programación R para el Análisis de Datos

Indonesia - R Programming for Data Analysis

Kazakhstan - R Programming for Data Analysis

Moldova - R Programming for Data Analysis

Morocco - R Programming for Data Analysis

Tunisia - R Programming for Data Analysis

Kuwait - R Programming for Data Analysis

Oman - R Programming for Data Analysis

Slovakia - R Programming for Data Analysis

Kenya - R Programming for Data Analysis

Nigeria - R Programming for Data Analysis

Botswana - R Programming for Data Analysis

Slovenia - R Programming for Data Analysis

Croatia - R Programming for Data Analysis

Serbia - R Programming for Data Analysis

Bhutan - R Programming for Data Analysis

Nepal - R Programming for Data Analysis

Uzbekistan - R Programming for Data Analysis