Any programming language knowledge is required. Familiarity with Machine Learning is not required but beneficial.
Audience
This course is suitable for Deep Learning researchers and engineers interested in utilizing available tools (mostly open source) for analyzing computer images
This course provide working examples.
Deep Learning vs Machine Learning vs Other Methods
- When Deep Learning is suitable
- Limits of Deep Learning
- Comparing accuracy and cost of different methods
Methods Overview
- Nets and Layers
- Forward / Backward: the essential computations of layered compositional models.
- Loss: the task to be learned is defined by the loss.
- Solver: the solver coordinates model optimization.
- Layer Catalogue: the layer is the fundamental unit of modeling and computation
- Convolution
Methods and models
- Backprop, modular models
- Logsum module
- RBF Net
- MAP/MLE loss
- Parameter Space Transforms
- Convolutional Module
- Gradient-Based Learning
- Energy for inference,
- Objective for learning
- PCA; NLL:
- Latent Variable Models
- Probabilistic LVM
- Loss Function
- Detection with Fast R-CNN
- Sequences with LSTMs and Vision + Language with LRCN
- Pixelwise prediction with FCNs
- Framework design and future
Tools
- Caffe
- Tensorflow
- R
- Matlab
- Others...
United Arab Emirates - Deep Learning for Vision
Qatar - Deep Learning for Vision
Egypt - Deep Learning for Vision
Saudi Arabia - Deep Learning for Vision
South Africa - Deep Learning for Vision
Brasil - Deep Learning for Vision
Canada - Deep Learning for Vision
USA - Deep Learning for Vision
Österreich - Deep Learning for Vision
Schweiz - Deep Learning for Vision
Deutschland - Deep Learning for Vision
Czech Republic - Deep Learning for Vision
Denmark - Deep Learning for Vision
Estonia - Deep Learning for Vision
Finland - Deep Learning for Vision
Greece - Deep Learning for Vision
Magyarország - Deep Learning for Vision
Ireland - Deep Learning for Vision
Luxembourg - Deep Learning for Vision
Latvia - Deep Learning for Vision
España - Aprendizaje Profundo para Vision
Italia - Deep Learning for Vision
Lithuania - Deep Learning for Vision
Nederland - Deep Learning for Vision
Norway - Deep Learning for Vision
Portugal - Deep Learning for Vision
România - Deep Learning for Vision
Sverige - Deep Learning for Vision
Türkiye - Deep Learning for Vision
Malta - Deep Learning for Vision
Belgique - Deep Learning for Vision
France - Deep Learning for Vision
Australia - Deep Learning for Vision
Malaysia - Deep Learning for Vision
New Zealand - Deep Learning for Vision
Philippines - Deep Learning for Vision
Singapore - Deep Learning for Vision
Thailand - Deep Learning for Vision
Vietnam - Deep Learning for Vision
India - Deep Learning for Vision
Argentina - Aprendizaje Profundo para Vision
Chile - Aprendizaje Profundo para Vision
Costa Rica - Aprendizaje Profundo para Vision
Ecuador - Aprendizaje Profundo para Vision
Guatemala - Aprendizaje Profundo para Vision
Colombia - Aprendizaje Profundo para Vision
México - Aprendizaje Profundo para Vision
Panama - Aprendizaje Profundo para Vision
Peru - Aprendizaje Profundo para Vision
Uruguay - Aprendizaje Profundo para Vision
Venezuela - Aprendizaje Profundo para Vision
Polska - Deep Learning for Vision
United Kingdom - Deep Learning for Vision
South Korea - Deep Learning for Vision
Pakistan - Deep Learning for Vision
Sri Lanka - Deep Learning for Vision
Bulgaria - Deep Learning for Vision
Bolivia - Aprendizaje Profundo para Vision
Indonesia - Deep Learning for Vision
Kazakhstan - Deep Learning for Vision
Moldova - Deep Learning for Vision
Morocco - Deep Learning for Vision
Tunisia - Deep Learning for Vision
Kuwait - Deep Learning for Vision
Oman - Deep Learning for Vision
Slovakia - Deep Learning for Vision
Kenya - Deep Learning for Vision
Nigeria - Deep Learning for Vision
Botswana - Deep Learning for Vision
Slovenia - Deep Learning for Vision
Croatia - Deep Learning for Vision
Serbia - Deep Learning for Vision
Bhutan - Deep Learning for Vision