Course Code: jupyter
Duration: 7 hours
Prerequisites:
  • Programming experience in languages such as Python, R, Scala, etc.
  • A background in data science

Audience

  • Data science teams
Overview:

Jupyter is an open-source, web-based interactive IDE and computing environment.

This instructor-led, live training (online or onsite) introduces the idea of collaborative development in data science and demonstrates how to use Jupyter to track and participate as a team in the "life cycle of a computational idea".  It walks participants through the creation of a sample data science project based on top of the Jupyter ecosystem.

By the end of this training, participants will be able to:

  • Install and configure Jupyter, including the creation and integration of a team repository on Git.
  • Use Jupyter features such as extensions, interactive widgets, multiuser mode and more to enable project collaboraton.
  • Create, share and organize Jupyter Notebooks with team members.
  • Choose from Scala, Python, R, to write and execute code against big data systems such as Apache Spark, all through the Jupyter interface.

Format of the Course

  • Interactive lecture and discussion.
  • Lots of exercises and practice.
  • Hands-on implementation in a live-lab environment.

Course Customization Options

  • The Jupyter Notebook supports over 40 languages including R, Python, Scala, Julia, etc. To customize this course to your language(s) of choice, please contact us to arrange.
Course Outline:

Introduction to Jupyter

  • Overview of Jupyter and its ecosystem
  • Installation and setup
  • Configuring Jupyter for team collaboration

Collaborative Features

  • Using Git for version control
  • Extensions and interactive widgets
  • Multiuser mode

Creating and Managing Notebooks

  • Notebook structure and functionality
  • Sharing and organizing notebooks
  • Best practices for collaboration

Programming with Jupyter

  • Choosing and using programming languages (Python, R, Scala)
  • Writing and executing code
  • Integrating with big data systems (Apache Spark)

Advanced Jupyter Features

  • Customizing Jupyter environment
  • Automating workflows with Jupyter
  • Exploring advanced use cases

Practical Sessions

  • Hands-on labs
  • Real-world data science projects
  • Group exercises and peer reviews

Summary and Next Steps

Sites Published:

United Arab Emirates - Jupyter for Data Science Teams

Qatar - Jupyter for Data Science Teams

Egypt - Jupyter for Data Science Teams

Saudi Arabia - Jupyter for Data Science Teams

South Africa - Jupyter for Data Science Teams

Brasil - Jupyter for Data Science Teams

Canada - Jupyter for Data Science Teams

中国 - Jupyter for Data Science Teams

香港 - Jupyter for Data Science Teams

澳門 - Jupyter for Data Science Teams

台灣 - Jupyter for Data Science Teams

USA - Jupyter for Data Science Teams

Österreich - Jupyter for Data Science Teams

Schweiz - Jupyter for Data Science Teams

Deutschland - Jupyter for Data Science Teams

Czech Republic - Jupyter for Data Science Teams

Denmark - Jupyter for Data Science Teams

Estonia - Jupyter for Data Science Teams

Finland - Jupyter for Data Science Teams

Greece - Jupyter for Data Science Teams

Magyarország - Jupyter for Data Science Teams

Ireland - Jupyter for Data Science Teams

Luxembourg - Jupyter for Data Science Teams

Latvia - Jupyter for Data Science Teams

España - Jupyter para Equipos de Ciencia de Datos

Italia - Jupyter for Data Science Teams

Lithuania - Jupyter for Data Science Teams

Nederland - Jupyter for Data Science Teams

Norway - Jupyter for Data Science Teams

Portugal - Jupyter for Data Science Teams

România - Jupyter for Data Science Teams

Sverige - Jupyter for Data Science Teams

Türkiye - Jupyter for Data Science Teams

Malta - Jupyter for Data Science Teams

Belgique - Jupyter for Data Science Teams

France - Jupyter for Data Science Teams

日本 - Jupyter for Data Science Teams

Australia - Jupyter for Data Science Teams

Malaysia - Jupyter for Data Science Teams

New Zealand - Jupyter for Data Science Teams

Philippines - Jupyter for Data Science Teams

Singapore - Jupyter for Data Science Teams

Thailand - Jupyter for Data Science Teams

Vietnam - Jupyter for Data Science Teams

India - Jupyter for Data Science Teams

Argentina - Jupyter para Equipos de Ciencia de Datos

Chile - Jupyter para Equipos de Ciencia de Datos

Costa Rica - Jupyter para Equipos de Ciencia de Datos

Ecuador - Jupyter para Equipos de Ciencia de Datos

Guatemala - Jupyter para Equipos de Ciencia de Datos

Colombia - Jupyter para Equipos de Ciencia de Datos

México - Jupyter para Equipos de Ciencia de Datos

Panama - Jupyter para Equipos de Ciencia de Datos

Peru - Jupyter para Equipos de Ciencia de Datos

Uruguay - Jupyter para Equipos de Ciencia de Datos

Venezuela - Jupyter para Equipos de Ciencia de Datos

Polska - Jupyter for Data Science Teams

United Kingdom - Jupyter for Data Science Teams

South Korea - Jupyter for Data Science Teams

Pakistan - Jupyter for Data Science Teams

Sri Lanka - Jupyter for Data Science Teams

Bulgaria - Jupyter for Data Science Teams

Bolivia - Jupyter para Equipos de Ciencia de Datos

Indonesia - Jupyter for Data Science Teams

Kazakhstan - Jupyter for Data Science Teams

Moldova - Jupyter for Data Science Teams

Morocco - Jupyter for Data Science Teams

Tunisia - Jupyter for Data Science Teams

Kuwait - Jupyter for Data Science Teams

Oman - Jupyter for Data Science Teams

Slovakia - Jupyter for Data Science Teams

Kenya - Jupyter for Data Science Teams

Nigeria - Jupyter for Data Science Teams

Botswana - Jupyter for Data Science Teams

Slovenia - Jupyter for Data Science Teams

Croatia - Jupyter for Data Science Teams

Serbia - Jupyter for Data Science Teams

Bhutan - Jupyter for Data Science Teams

Nepal - Jupyter for Data Science Teams

Uzbekistan - Jupyter for Data Science Teams