- Programming experience in languages such as Python, R, Scala, etc.
- A background in data science
Audience
- Data science teams
Jupyter is an open-source, web-based interactive IDE and computing environment.
This instructor-led, live training (online or onsite) introduces the idea of collaborative development in data science and demonstrates how to use Jupyter to track and participate as a team in the "life cycle of a computational idea". It walks participants through the creation of a sample data science project based on top of the Jupyter ecosystem.
By the end of this training, participants will be able to:
- Install and configure Jupyter, including the creation and integration of a team repository on Git.
- Use Jupyter features such as extensions, interactive widgets, multiuser mode and more to enable project collaboraton.
- Create, share and organize Jupyter Notebooks with team members.
- Choose from Scala, Python, R, to write and execute code against big data systems such as Apache Spark, all through the Jupyter interface.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- The Jupyter Notebook supports over 40 languages including R, Python, Scala, Julia, etc. To customize this course to your language(s) of choice, please contact us to arrange.
Introduction to Jupyter
- Overview of Jupyter and its ecosystem
- Installation and setup
- Configuring Jupyter for team collaboration
Collaborative Features
- Using Git for version control
- Extensions and interactive widgets
- Multiuser mode
Creating and Managing Notebooks
- Notebook structure and functionality
- Sharing and organizing notebooks
- Best practices for collaboration
Programming with Jupyter
- Choosing and using programming languages (Python, R, Scala)
- Writing and executing code
- Integrating with big data systems (Apache Spark)
Advanced Jupyter Features
- Customizing Jupyter environment
- Automating workflows with Jupyter
- Exploring advanced use cases
Practical Sessions
- Hands-on labs
- Real-world data science projects
- Group exercises and peer reviews
Summary and Next Steps
United Arab Emirates - Jupyter for Data Science Teams
Qatar - Jupyter for Data Science Teams
Egypt - Jupyter for Data Science Teams
Saudi Arabia - Jupyter for Data Science Teams
South Africa - Jupyter for Data Science Teams
Brasil - Jupyter for Data Science Teams
Canada - Jupyter for Data Science Teams
中国 - Jupyter for Data Science Teams
香港 - Jupyter for Data Science Teams
澳門 - Jupyter for Data Science Teams
台灣 - Jupyter for Data Science Teams
USA - Jupyter for Data Science Teams
Österreich - Jupyter for Data Science Teams
Schweiz - Jupyter for Data Science Teams
Deutschland - Jupyter for Data Science Teams
Czech Republic - Jupyter for Data Science Teams
Denmark - Jupyter for Data Science Teams
Estonia - Jupyter for Data Science Teams
Finland - Jupyter for Data Science Teams
Greece - Jupyter for Data Science Teams
Magyarország - Jupyter for Data Science Teams
Ireland - Jupyter for Data Science Teams
Luxembourg - Jupyter for Data Science Teams
Latvia - Jupyter for Data Science Teams
España - Jupyter para Equipos de Ciencia de Datos
Italia - Jupyter for Data Science Teams
Lithuania - Jupyter for Data Science Teams
Nederland - Jupyter for Data Science Teams
Norway - Jupyter for Data Science Teams
Portugal - Jupyter for Data Science Teams
România - Jupyter for Data Science Teams
Sverige - Jupyter for Data Science Teams
Türkiye - Jupyter for Data Science Teams
Malta - Jupyter for Data Science Teams
Belgique - Jupyter for Data Science Teams
France - Jupyter for Data Science Teams
日本 - Jupyter for Data Science Teams
Australia - Jupyter for Data Science Teams
Malaysia - Jupyter for Data Science Teams
New Zealand - Jupyter for Data Science Teams
Philippines - Jupyter for Data Science Teams
Singapore - Jupyter for Data Science Teams
Thailand - Jupyter for Data Science Teams
Vietnam - Jupyter for Data Science Teams
India - Jupyter for Data Science Teams
Argentina - Jupyter para Equipos de Ciencia de Datos
Chile - Jupyter para Equipos de Ciencia de Datos
Costa Rica - Jupyter para Equipos de Ciencia de Datos
Ecuador - Jupyter para Equipos de Ciencia de Datos
Guatemala - Jupyter para Equipos de Ciencia de Datos
Colombia - Jupyter para Equipos de Ciencia de Datos
México - Jupyter para Equipos de Ciencia de Datos
Panama - Jupyter para Equipos de Ciencia de Datos
Peru - Jupyter para Equipos de Ciencia de Datos
Uruguay - Jupyter para Equipos de Ciencia de Datos
Venezuela - Jupyter para Equipos de Ciencia de Datos
Polska - Jupyter for Data Science Teams
United Kingdom - Jupyter for Data Science Teams
South Korea - Jupyter for Data Science Teams
Pakistan - Jupyter for Data Science Teams
Sri Lanka - Jupyter for Data Science Teams
Bulgaria - Jupyter for Data Science Teams
Bolivia - Jupyter para Equipos de Ciencia de Datos
Indonesia - Jupyter for Data Science Teams
Kazakhstan - Jupyter for Data Science Teams
Moldova - Jupyter for Data Science Teams
Morocco - Jupyter for Data Science Teams
Tunisia - Jupyter for Data Science Teams
Kuwait - Jupyter for Data Science Teams
Oman - Jupyter for Data Science Teams
Slovakia - Jupyter for Data Science Teams
Kenya - Jupyter for Data Science Teams
Nigeria - Jupyter for Data Science Teams
Botswana - Jupyter for Data Science Teams
Slovenia - Jupyter for Data Science Teams
Croatia - Jupyter for Data Science Teams
Serbia - Jupyter for Data Science Teams
Bhutan - Jupyter for Data Science Teams