Course Code: automl
Duration: 14 hours
Prerequisites:
  • Experience with machine learning algorithms.
  • Python or R programming experience.

Audience

  • Data analysts
  • Data scientists
  • Data engineers
  • Developers
Overview:

AutoML is user-friendly machine learning software that automates much of the work needed to select an ideal machine learning algorithm, its parameter settings, and pre-processing methods.

This instructor-led, live training (online or onsite) is aimed at technical persons with a background in machine learning who wish to optimize the machine learning models used for detecting complex patterns in big data.

By the end of this training, participants will be able to:

  • Install and evaluate various open source AutoML tools (H2O AutoML, auto-sklearn, TPOT, TensorFlow, PyTorch, Auto-Keras, TPOT, Auto-WEKA, etc.)
  • Train high quality machine learning models.
  • Efficiently solve different types of supervised machine learning problems.
  • Write just the necessary code to initiate the automated machine learning process.

Format of the Course

  • Interactive lecture and discussion.
  • Lots of exercises and practice.
  • Hands-on implementation in a live-lab environment.

Course Customization Options

  • To request a customized training for this course, please contact us to arrange.
  • To learn more about AutoML, please visit: https://www.automl.org/
Course Outline:

Introduction

Setting up a Working Environment

Overview of AutoML Features

How AutoML Explores Algorithms

  • Gradient Boosting Machines (GBMs), Random Forests, GLMs, etc.

Solving Problems by Use-Case

Solving Problems by Training Data Type

Data Privacy Considerations

Cost Considerations

Preparing Data

Working with Numeric and Categorical Data

  • IID tabular data (H2O AutoML, auto-sklearn, TPOT)

Working with Time Dependent Data (Time-Series Data)

Classifying Raw Text

Classifying Raw Image Data

  • Deep Learning and Neural Architecture Search (TensorFlow, PyTorch, Auto-Keras, etc.)

Deploying an AutoML Method

A Look at the Algorithms Inside AutoML

Ensembling Different Models Together

Troubleshooting

Summary and Conclusion

Sites Published:

United Arab Emirates - AutoML

Qatar - AutoML

Egypt - AutoML

Saudi Arabia - AutoML

South Africa - AutoML

Brasil - AutoML

Canada - AutoML

中国 - AutoML

香港 - AutoML

澳門 - AutoML

台灣 - AutoML

USA - AutoML

Österreich - AutoML

Schweiz - AutoML

Deutschland - AutoML

Czech Republic - AutoML

Denmark - AutoML

Estonia - AutoML

Finland - AutoML

Greece - AutoML

Magyarország - AutoML

Ireland - AutoML

Luxembourg - AutoML

Latvia - AutoML

España - AutoML

Italia - AutoML

Lithuania - AutoML

Nederland - AutoML

Norway - AutoML

Portugal - AutoML

România - AutoML

Sverige - AutoML

Türkiye - AutoML

Malta - AutoML

Belgique - AutoML

France - AutoML

日本 - AutoML

Australia - AutoML

Malaysia - AutoML

New Zealand - AutoML

Philippines - AutoML

Singapore - AutoML

Thailand - AutoML

Vietnam - AutoML

India - AutoML

Argentina - AutoML

Chile - AutoML

Costa Rica - AutoML

Ecuador - AutoML

Guatemala - AutoML

Colombia - AutoML

México - AutoML

Panama - AutoML

Peru - AutoML

Uruguay - AutoML

Venezuela - AutoML

Polska - AutoML

United Kingdom - AutoML

South Korea - AutoML

Pakistan - AutoML

Sri Lanka - AutoML

Bulgaria - AutoML

Bolivia - AutoML

Indonesia - AutoML

Kazakhstan - AutoML

Moldova - AutoML

Morocco - AutoML

Tunisia - AutoML

Kuwait - AutoML

Oman - AutoML

Slovakia - AutoML

Kenya - AutoML

Nigeria - AutoML

Botswana - AutoML

Slovenia - AutoML

Croatia - AutoML

Serbia - AutoML

Bhutan - AutoML

Nepal - AutoML

Uzbekistan - AutoML