- Knowledge of Python or other programming languages
- General understanding of artificial intelligence (AI) concepts
Audience
- Researchers
- Developers
ParlAI is an open-source, Python-based platform that helps users train, configure, and test dialogue models for conversational AI. ParlAI integrates with existing chat services and provides various datasets and reference models to improve dialog AI research.
This instructor-led, live training (online or onsite) is aimed at researchers and developers who wish to install, configure, customize, and manage the ParlAI platform to develop their AI models.
By the end of this training, participants will be able to share, train, and evaluate AI models to build and develop conversational solutions across existing chat services.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Introduction
Overview of ParlAI Features and Architecture
- ParlAI framework
- Key capabilities and goals
- Core concepts (agents, messages, teachers, and worlds)
Getting Started with ParlAI for Conversational AI
- Installation
- Adding a simple model
- Simple display data script
- Validation and testing
- Tasks
- Agent training and evaluation
- Interacting with models
Working with Tasks and Datasets in ParlAI
- Adding datasets
- Separating data into sets (train, valid, or test)
- Using JSON instead of a text file
- Creating and executing tasks
Exploring Worlds, Sharing, and Batching
- The concept of Worlds
- Agent sharing
- Implementing batching
- Dynamic batching
Using Torch Generator and Ranker Agents
- Torch generator agent
- Torch ranker agent
- Example models
- Creating models
- Training and evaluating models
Adding Built-In and Custom Metrics
- Standard metrics
- Adding custom metrics
- Teacher metrics
- Agent level metrics (global and local)
- List of metrics
Speeding up Training Runs in ParlAI
- Setting a baseline
- Skip generation command
- Dynamic batching training command
- Using FP16 and multiple GPUs
- Background preprocessing
Exploring Other ParlAI Topics
- Using and writing mutators
- Running crowdsourcing tasks
- Using existing chat services
- Swapping out transformer subcomponents
- Running and writing tests
- ParlAI tips and tricks
Troubleshooting
Summary and Conclusion
United Arab Emirates - ParlAI for Conversational AI
Qatar - ParlAI for Conversational AI
Egypt - ParlAI for Conversational AI
Saudi Arabia - ParlAI for Conversational AI
South Africa - ParlAI for Conversational AI
Brasil - ParlAI for Conversational AI
Canada - ParlAI for Conversational AI
中国 - ParlAI for Conversational AI
香港 - ParlAI for Conversational AI
澳門 - ParlAI for Conversational AI
台灣 - ParlAI for Conversational AI
USA - ParlAI for Conversational AI
Österreich - ParlAI for Conversational AI
Schweiz - ParlAI for Conversational AI
Deutschland - ParlAI for Conversational AI
Czech Republic - ParlAI for Conversational AI
Denmark - ParlAI for Conversational AI
Estonia - ParlAI for Conversational AI
Finland - ParlAI for Conversational AI
Greece - ParlAI for Conversational AI
Magyarország - ParlAI for Conversational AI
Ireland - ParlAI for Conversational AI
Luxembourg - ParlAI for Conversational AI
Latvia - ParlAI for Conversational AI
España - ParlAI for Conversational AI
Italia - ParlAI for Conversational AI
Lithuania - ParlAI for Conversational AI
Nederland - ParlAI for Conversational AI
Norway - ParlAI for Conversational AI
Portugal - ParlAI for Conversational AI
România - ParlAI for Conversational AI
Sverige - ParlAI for Conversational AI
Türkiye - ParlAI for Conversational AI
Malta - ParlAI for Conversational AI
Belgique - ParlAI for Conversational AI
France - ParlAI for Conversational AI
日本 - ParlAI for Conversational AI
Australia - ParlAI for Conversational AI
Malaysia - ParlAI for Conversational AI
New Zealand - ParlAI for Conversational AI
Philippines - ParlAI for Conversational AI
Singapore - ParlAI for Conversational AI
Thailand - ParlAI for Conversational AI
Vietnam - ParlAI for Conversational AI
India - ParlAI for Conversational AI
Argentina - ParlAI for Conversational AI
Chile - ParlAI for Conversational AI
Costa Rica - ParlAI for Conversational AI
Ecuador - ParlAI for Conversational AI
Guatemala - ParlAI for Conversational AI
Colombia - ParlAI for Conversational AI
México - ParlAI for Conversational AI
Panama - ParlAI for Conversational AI
Peru - ParlAI for Conversational AI
Uruguay - ParlAI for Conversational AI
Venezuela - ParlAI for Conversational AI
Polska - ParlAI for Conversational AI
United Kingdom - ParlAI for Conversational AI
South Korea - ParlAI for Conversational AI
Pakistan - ParlAI for Conversational AI
Sri Lanka - ParlAI for Conversational AI
Bulgaria - ParlAI for Conversational AI
Bolivia - ParlAI for Conversational AI
Indonesia - ParlAI for Conversational AI
Kazakhstan - ParlAI for Conversational AI
Moldova - ParlAI for Conversational AI
Morocco - ParlAI for Conversational AI
Tunisia - ParlAI for Conversational AI
Kuwait - ParlAI for Conversational AI
Oman - ParlAI for Conversational AI
Slovakia - ParlAI for Conversational AI
Kenya - ParlAI for Conversational AI
Nigeria - ParlAI for Conversational AI
Botswana - ParlAI for Conversational AI
Slovenia - ParlAI for Conversational AI
Croatia - ParlAI for Conversational AI
Serbia - ParlAI for Conversational AI
Bhutan - ParlAI for Conversational AI