Course Code: parlai
Duration: 14 hours
Prerequisites:
  • Knowledge of Python or other programming languages
  • General understanding of artificial intelligence (AI) concepts

Audience

  • Researchers
  • Developers
Overview:

ParlAI is an open-source, Python-based platform that helps users train, configure, and test dialogue models for conversational AI. ParlAI integrates with existing chat services and provides various datasets and reference models to improve dialog AI research.

This instructor-led, live training (online or onsite) is aimed at researchers and developers who wish to install, configure, customize, and manage the ParlAI platform to develop their AI models.

By the end of this training, participants will be able to share, train, and evaluate AI models to build and develop conversational solutions across existing chat services.

Format of the Course

  • Interactive lecture and discussion.
  • Lots of exercises and practice.
  • Hands-on implementation in a live-lab environment.

Course Customization Options

  • To request a customized training for this course, please contact us to arrange.
Course Outline:

Introduction

Overview of ParlAI Features and Architecture

  • ParlAI framework
  • Key capabilities and goals
  • Core concepts (agents, messages, teachers, and worlds)

Getting Started with ParlAI for Conversational AI

  • Installation
  • Adding a simple model
  • Simple display data script
  • Validation and testing
  • Tasks
  • Agent training and evaluation
  • Interacting with models

Working with Tasks and Datasets in ParlAI

  • Adding datasets
  • Separating data into sets (train, valid, or test)
  • Using JSON instead of a text file
  • Creating and executing tasks

Exploring Worlds, Sharing, and Batching

  • The concept of Worlds
  • Agent sharing
  • Implementing batching
  • Dynamic batching

Using Torch Generator and Ranker Agents

  • Torch generator agent
  • Torch ranker agent
  • Example models
  • Creating models
  • Training and evaluating models

Adding Built-In and Custom Metrics

  • Standard metrics
  • Adding custom metrics
  • Teacher metrics
  • Agent level metrics (global and local)
  • List of metrics

Speeding up Training Runs in ParlAI

  • Setting a baseline
  • Skip generation command
  • Dynamic batching training command
  • Using FP16 and multiple GPUs
  • Background preprocessing

Exploring Other ParlAI Topics

  • Using and writing mutators
  • Running crowdsourcing tasks
  • Using existing chat services
  • Swapping out transformer subcomponents
  • Running and writing tests
  • ParlAI tips and tricks

Troubleshooting

Summary and Conclusion

Sites Published:

United Arab Emirates - ParlAI for Conversational AI

Qatar - ParlAI for Conversational AI

Egypt - ParlAI for Conversational AI

Saudi Arabia - ParlAI for Conversational AI

South Africa - ParlAI for Conversational AI

Brasil - ParlAI for Conversational AI

Canada - ParlAI for Conversational AI

中国 - ParlAI for Conversational AI

香港 - ParlAI for Conversational AI

澳門 - ParlAI for Conversational AI

台灣 - ParlAI for Conversational AI

USA - ParlAI for Conversational AI

Österreich - ParlAI for Conversational AI

Schweiz - ParlAI for Conversational AI

Deutschland - ParlAI for Conversational AI

Czech Republic - ParlAI for Conversational AI

Denmark - ParlAI for Conversational AI

Estonia - ParlAI for Conversational AI

Finland - ParlAI for Conversational AI

Greece - ParlAI for Conversational AI

Magyarország - ParlAI for Conversational AI

Ireland - ParlAI for Conversational AI

Luxembourg - ParlAI for Conversational AI

Latvia - ParlAI for Conversational AI

España - ParlAI for Conversational AI

Italia - ParlAI for Conversational AI

Lithuania - ParlAI for Conversational AI

Nederland - ParlAI for Conversational AI

Norway - ParlAI for Conversational AI

Portugal - ParlAI for Conversational AI

România - ParlAI for Conversational AI

Sverige - ParlAI for Conversational AI

Türkiye - ParlAI for Conversational AI

Malta - ParlAI for Conversational AI

Belgique - ParlAI for Conversational AI

France - ParlAI for Conversational AI

日本 - ParlAI for Conversational AI

Australia - ParlAI for Conversational AI

Malaysia - ParlAI for Conversational AI

New Zealand - ParlAI for Conversational AI

Philippines - ParlAI for Conversational AI

Singapore - ParlAI for Conversational AI

Thailand - ParlAI for Conversational AI

Vietnam - ParlAI for Conversational AI

India - ParlAI for Conversational AI

Argentina - ParlAI for Conversational AI

Chile - ParlAI for Conversational AI

Costa Rica - ParlAI for Conversational AI

Ecuador - ParlAI for Conversational AI

Guatemala - ParlAI for Conversational AI

Colombia - ParlAI for Conversational AI

México - ParlAI for Conversational AI

Panama - ParlAI for Conversational AI

Peru - ParlAI for Conversational AI

Uruguay - ParlAI for Conversational AI

Venezuela - ParlAI for Conversational AI

Polska - ParlAI for Conversational AI

United Kingdom - ParlAI for Conversational AI

South Korea - ParlAI for Conversational AI

Pakistan - ParlAI for Conversational AI

Sri Lanka - ParlAI for Conversational AI

Bulgaria - ParlAI for Conversational AI

Bolivia - ParlAI for Conversational AI

Indonesia - ParlAI for Conversational AI

Kazakhstan - ParlAI for Conversational AI

Moldova - ParlAI for Conversational AI

Morocco - ParlAI for Conversational AI

Tunisia - ParlAI for Conversational AI

Kuwait - ParlAI for Conversational AI

Oman - ParlAI for Conversational AI

Slovakia - ParlAI for Conversational AI

Kenya - ParlAI for Conversational AI

Nigeria - ParlAI for Conversational AI

Botswana - ParlAI for Conversational AI

Slovenia - ParlAI for Conversational AI

Croatia - ParlAI for Conversational AI

Serbia - ParlAI for Conversational AI

Bhutan - ParlAI for Conversational AI

Nepal - ParlAI for Conversational AI

Uzbekistan - ParlAI for Conversational AI