Course Code: tinymledgeai
Duration: 21 hours
Prerequisites:
  • An understanding of embedded systems and microcontrollers
  • Experience with AI or machine learning fundamentals
  • Basic knowledge of C, C++, or Python programming

Audience

  • Embedded engineers
  • IoT developers
  • AI researchers
Overview:

TinyML is revolutionizing AI by enabling ultra-low-power machine learning on microcontrollers and resource-constrained edge devices.

This instructor-led, live training (online or onsite) is aimed at intermediate-level embedded engineers, IoT developers, and AI researchers who wish to implement TinyML techniques for AI-powered applications on energy-efficient hardware.

By the end of this training, participants will be able to:

  • Understand the fundamentals of TinyML and edge AI.
  • Deploy lightweight AI models on microcontrollers.
  • Optimize AI inference for low-power consumption.
  • Integrate TinyML with real-world IoT applications.

Format of the Course

  • Interactive lecture and discussion.
  • Lots of exercises and practice.
  • Hands-on implementation in a live-lab environment.

Course Customization Options

  • To request a customized training for this course, please contact us to arrange.
Course Outline:

Introduction to TinyML

  • What is TinyML?
  • Why run AI on microcontrollers?
  • Challenges and benefits of TinyML

Setting Up the TinyML Development Environment

  • Overview of TinyML toolchains
  • Installing TensorFlow Lite for Microcontrollers
  • Working with Arduino IDE and Edge Impulse

Building and Deploying TinyML Models

  • Training AI models for TinyML
  • Converting and compressing AI models for microcontrollers
  • Deploying models on low-power hardware

Optimizing TinyML for Energy Efficiency

  • Quantization techniques for model compression
  • Latency and power consumption considerations
  • Balancing performance and energy efficiency

Real-Time Inference on Microcontrollers

  • Processing sensor data with TinyML
  • Running AI models on Arduino, STM32, and Raspberry Pi Pico
  • Optimizing inference for real-time applications

Integrating TinyML with IoT and Edge Applications

  • Connecting TinyML with IoT devices
  • Wireless communication and data transmission
  • Deploying AI-powered IoT solutions

Real-World Applications and Future Trends

  • Use cases in healthcare, agriculture, and industrial monitoring
  • The future of ultra-low-power AI
  • Next steps in TinyML research and deployment

Summary and Next Steps

Sites Published:

United Arab Emirates - TinyML: Running AI on Ultra-Low-Power Edge Devices

Qatar - TinyML: Running AI on Ultra-Low-Power Edge Devices

Egypt - TinyML: Running AI on Ultra-Low-Power Edge Devices

Saudi Arabia - TinyML: Running AI on Ultra-Low-Power Edge Devices

South Africa - TinyML: Running AI on Ultra-Low-Power Edge Devices

Brasil - TinyML: Running AI on Ultra-Low-Power Edge Devices

Canada - TinyML: Running AI on Ultra-Low-Power Edge Devices

中国 - TinyML: Running AI on Ultra-Low-Power Edge Devices

香港 - TinyML: Running AI on Ultra-Low-Power Edge Devices

澳門 - TinyML: Running AI on Ultra-Low-Power Edge Devices

台灣 - TinyML: Running AI on Ultra-Low-Power Edge Devices

USA - TinyML: Running AI on Ultra-Low-Power Edge Devices

Österreich - TinyML: Running AI on Ultra-Low-Power Edge Devices

Schweiz - TinyML: Running AI on Ultra-Low-Power Edge Devices

Deutschland - TinyML: Running AI on Ultra-Low-Power Edge Devices

Czech Republic - TinyML: Running AI on Ultra-Low-Power Edge Devices

Denmark - TinyML: Running AI on Ultra-Low-Power Edge Devices

Estonia - TinyML: Running AI on Ultra-Low-Power Edge Devices

Finland - TinyML: Running AI on Ultra-Low-Power Edge Devices

Greece - TinyML: Running AI on Ultra-Low-Power Edge Devices

Magyarország - TinyML: Running AI on Ultra-Low-Power Edge Devices

Ireland - TinyML: Running AI on Ultra-Low-Power Edge Devices

Luxembourg - TinyML: Running AI on Ultra-Low-Power Edge Devices

Latvia - TinyML: Running AI on Ultra-Low-Power Edge Devices

España - TinyML: Running AI on Ultra-Low-Power Edge Devices

Italia - TinyML: Running AI on Ultra-Low-Power Edge Devices

Lithuania - TinyML: Running AI on Ultra-Low-Power Edge Devices

Nederland - TinyML: Running AI on Ultra-Low-Power Edge Devices

Norway - TinyML: Running AI on Ultra-Low-Power Edge Devices

Portugal - TinyML: Running AI on Ultra-Low-Power Edge Devices

România - TinyML: Running AI on Ultra-Low-Power Edge Devices

Sverige - TinyML: Running AI on Ultra-Low-Power Edge Devices

Türkiye - TinyML: Running AI on Ultra-Low-Power Edge Devices

Malta - TinyML: Running AI on Ultra-Low-Power Edge Devices

Belgique - TinyML: Running AI on Ultra-Low-Power Edge Devices

France - TinyML: Running AI on Ultra-Low-Power Edge Devices

日本 - TinyML: Running AI on Ultra-Low-Power Edge Devices

Australia - TinyML: Running AI on Ultra-Low-Power Edge Devices

Malaysia - TinyML: Running AI on Ultra-Low-Power Edge Devices

New Zealand - TinyML: Running AI on Ultra-Low-Power Edge Devices

Philippines - TinyML: Running AI on Ultra-Low-Power Edge Devices

Singapore - TinyML: Running AI on Ultra-Low-Power Edge Devices

Thailand - TinyML: Running AI on Ultra-Low-Power Edge Devices

Vietnam - TinyML: Running AI on Ultra-Low-Power Edge Devices

India - TinyML: Running AI on Ultra-Low-Power Edge Devices

Argentina - TinyML: Running AI on Ultra-Low-Power Edge Devices

Chile - TinyML: Running AI on Ultra-Low-Power Edge Devices

Costa Rica - TinyML: Running AI on Ultra-Low-Power Edge Devices

Ecuador - TinyML: Running AI on Ultra-Low-Power Edge Devices

Guatemala - TinyML: Running AI on Ultra-Low-Power Edge Devices

Colombia - TinyML: Running AI on Ultra-Low-Power Edge Devices

México - TinyML: Running AI on Ultra-Low-Power Edge Devices

Panama - TinyML: Running AI on Ultra-Low-Power Edge Devices

Peru - TinyML: Running AI on Ultra-Low-Power Edge Devices

Uruguay - TinyML: Running AI on Ultra-Low-Power Edge Devices

Venezuela - TinyML: Running AI on Ultra-Low-Power Edge Devices

Polska - TinyML: Running AI on Ultra-Low-Power Edge Devices

United Kingdom - TinyML: Running AI on Ultra-Low-Power Edge Devices

South Korea - TinyML: Running AI on Ultra-Low-Power Edge Devices

Pakistan - TinyML: Running AI on Ultra-Low-Power Edge Devices

Sri Lanka - TinyML: Running AI on Ultra-Low-Power Edge Devices

Bulgaria - TinyML: Running AI on Ultra-Low-Power Edge Devices

Bolivia - TinyML: Running AI on Ultra-Low-Power Edge Devices

Indonesia - TinyML: Running AI on Ultra-Low-Power Edge Devices

Kazakhstan - TinyML: Running AI on Ultra-Low-Power Edge Devices

Moldova - TinyML: Running AI on Ultra-Low-Power Edge Devices

Morocco - TinyML: Running AI on Ultra-Low-Power Edge Devices

Tunisia - TinyML: Running AI on Ultra-Low-Power Edge Devices

Kuwait - TinyML: Running AI on Ultra-Low-Power Edge Devices

Oman - TinyML: Running AI on Ultra-Low-Power Edge Devices

Slovakia - TinyML: Running AI on Ultra-Low-Power Edge Devices

Kenya - TinyML: Running AI on Ultra-Low-Power Edge Devices

Nigeria - TinyML: Running AI on Ultra-Low-Power Edge Devices

Botswana - TinyML: Running AI on Ultra-Low-Power Edge Devices

Slovenia - TinyML: Running AI on Ultra-Low-Power Edge Devices

Croatia - TinyML: Running AI on Ultra-Low-Power Edge Devices

Serbia - TinyML: Running AI on Ultra-Low-Power Edge Devices

Bhutan - TinyML: Running AI on Ultra-Low-Power Edge Devices

Nepal - TinyML: Running AI on Ultra-Low-Power Edge Devices

Uzbekistan - TinyML: Running AI on Ultra-Low-Power Edge Devices