- An understanding of embedded systems and microcontrollers
- Experience with AI or machine learning fundamentals
- Basic knowledge of C, C++, or Python programming
Audience
- Embedded engineers
- IoT developers
- AI researchers
TinyML is revolutionizing AI by enabling ultra-low-power machine learning on microcontrollers and resource-constrained edge devices.
This instructor-led, live training (online or onsite) is aimed at intermediate-level embedded engineers, IoT developers, and AI researchers who wish to implement TinyML techniques for AI-powered applications on energy-efficient hardware.
By the end of this training, participants will be able to:
- Understand the fundamentals of TinyML and edge AI.
- Deploy lightweight AI models on microcontrollers.
- Optimize AI inference for low-power consumption.
- Integrate TinyML with real-world IoT applications.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Introduction to TinyML
- What is TinyML?
- Why run AI on microcontrollers?
- Challenges and benefits of TinyML
Setting Up the TinyML Development Environment
- Overview of TinyML toolchains
- Installing TensorFlow Lite for Microcontrollers
- Working with Arduino IDE and Edge Impulse
Building and Deploying TinyML Models
- Training AI models for TinyML
- Converting and compressing AI models for microcontrollers
- Deploying models on low-power hardware
Optimizing TinyML for Energy Efficiency
- Quantization techniques for model compression
- Latency and power consumption considerations
- Balancing performance and energy efficiency
Real-Time Inference on Microcontrollers
- Processing sensor data with TinyML
- Running AI models on Arduino, STM32, and Raspberry Pi Pico
- Optimizing inference for real-time applications
Integrating TinyML with IoT and Edge Applications
- Connecting TinyML with IoT devices
- Wireless communication and data transmission
- Deploying AI-powered IoT solutions
Real-World Applications and Future Trends
- Use cases in healthcare, agriculture, and industrial monitoring
- The future of ultra-low-power AI
- Next steps in TinyML research and deployment
Summary and Next Steps
United Arab Emirates - TinyML: Running AI on Ultra-Low-Power Edge Devices
Qatar - TinyML: Running AI on Ultra-Low-Power Edge Devices
Egypt - TinyML: Running AI on Ultra-Low-Power Edge Devices
Saudi Arabia - TinyML: Running AI on Ultra-Low-Power Edge Devices
South Africa - TinyML: Running AI on Ultra-Low-Power Edge Devices
Brasil - TinyML: Running AI on Ultra-Low-Power Edge Devices
Canada - TinyML: Running AI on Ultra-Low-Power Edge Devices
中国 - TinyML: Running AI on Ultra-Low-Power Edge Devices
香港 - TinyML: Running AI on Ultra-Low-Power Edge Devices
澳門 - TinyML: Running AI on Ultra-Low-Power Edge Devices
台灣 - TinyML: Running AI on Ultra-Low-Power Edge Devices
USA - TinyML: Running AI on Ultra-Low-Power Edge Devices
Österreich - TinyML: Running AI on Ultra-Low-Power Edge Devices
Schweiz - TinyML: Running AI on Ultra-Low-Power Edge Devices
Deutschland - TinyML: Running AI on Ultra-Low-Power Edge Devices
Czech Republic - TinyML: Running AI on Ultra-Low-Power Edge Devices
Denmark - TinyML: Running AI on Ultra-Low-Power Edge Devices
Estonia - TinyML: Running AI on Ultra-Low-Power Edge Devices
Finland - TinyML: Running AI on Ultra-Low-Power Edge Devices
Greece - TinyML: Running AI on Ultra-Low-Power Edge Devices
Magyarország - TinyML: Running AI on Ultra-Low-Power Edge Devices
Ireland - TinyML: Running AI on Ultra-Low-Power Edge Devices
Luxembourg - TinyML: Running AI on Ultra-Low-Power Edge Devices
Latvia - TinyML: Running AI on Ultra-Low-Power Edge Devices
España - TinyML: Running AI on Ultra-Low-Power Edge Devices
Italia - TinyML: Running AI on Ultra-Low-Power Edge Devices
Lithuania - TinyML: Running AI on Ultra-Low-Power Edge Devices
Nederland - TinyML: Running AI on Ultra-Low-Power Edge Devices
Norway - TinyML: Running AI on Ultra-Low-Power Edge Devices
Portugal - TinyML: Running AI on Ultra-Low-Power Edge Devices
România - TinyML: Running AI on Ultra-Low-Power Edge Devices
Sverige - TinyML: Running AI on Ultra-Low-Power Edge Devices
Türkiye - TinyML: Running AI on Ultra-Low-Power Edge Devices
Malta - TinyML: Running AI on Ultra-Low-Power Edge Devices
Belgique - TinyML: Running AI on Ultra-Low-Power Edge Devices
France - TinyML: Running AI on Ultra-Low-Power Edge Devices
日本 - TinyML: Running AI on Ultra-Low-Power Edge Devices
Australia - TinyML: Running AI on Ultra-Low-Power Edge Devices
Malaysia - TinyML: Running AI on Ultra-Low-Power Edge Devices
New Zealand - TinyML: Running AI on Ultra-Low-Power Edge Devices
Philippines - TinyML: Running AI on Ultra-Low-Power Edge Devices
Singapore - TinyML: Running AI on Ultra-Low-Power Edge Devices
Thailand - TinyML: Running AI on Ultra-Low-Power Edge Devices
Vietnam - TinyML: Running AI on Ultra-Low-Power Edge Devices
India - TinyML: Running AI on Ultra-Low-Power Edge Devices
Argentina - TinyML: Running AI on Ultra-Low-Power Edge Devices
Chile - TinyML: Running AI on Ultra-Low-Power Edge Devices
Costa Rica - TinyML: Running AI on Ultra-Low-Power Edge Devices
Ecuador - TinyML: Running AI on Ultra-Low-Power Edge Devices
Guatemala - TinyML: Running AI on Ultra-Low-Power Edge Devices
Colombia - TinyML: Running AI on Ultra-Low-Power Edge Devices
México - TinyML: Running AI on Ultra-Low-Power Edge Devices
Panama - TinyML: Running AI on Ultra-Low-Power Edge Devices
Peru - TinyML: Running AI on Ultra-Low-Power Edge Devices
Uruguay - TinyML: Running AI on Ultra-Low-Power Edge Devices
Venezuela - TinyML: Running AI on Ultra-Low-Power Edge Devices
Polska - TinyML: Running AI on Ultra-Low-Power Edge Devices
United Kingdom - TinyML: Running AI on Ultra-Low-Power Edge Devices
South Korea - TinyML: Running AI on Ultra-Low-Power Edge Devices
Pakistan - TinyML: Running AI on Ultra-Low-Power Edge Devices
Sri Lanka - TinyML: Running AI on Ultra-Low-Power Edge Devices
Bulgaria - TinyML: Running AI on Ultra-Low-Power Edge Devices
Bolivia - TinyML: Running AI on Ultra-Low-Power Edge Devices
Indonesia - TinyML: Running AI on Ultra-Low-Power Edge Devices
Kazakhstan - TinyML: Running AI on Ultra-Low-Power Edge Devices
Moldova - TinyML: Running AI on Ultra-Low-Power Edge Devices
Morocco - TinyML: Running AI on Ultra-Low-Power Edge Devices
Tunisia - TinyML: Running AI on Ultra-Low-Power Edge Devices
Kuwait - TinyML: Running AI on Ultra-Low-Power Edge Devices
Oman - TinyML: Running AI on Ultra-Low-Power Edge Devices
Slovakia - TinyML: Running AI on Ultra-Low-Power Edge Devices
Kenya - TinyML: Running AI on Ultra-Low-Power Edge Devices
Nigeria - TinyML: Running AI on Ultra-Low-Power Edge Devices
Botswana - TinyML: Running AI on Ultra-Low-Power Edge Devices
Slovenia - TinyML: Running AI on Ultra-Low-Power Edge Devices
Croatia - TinyML: Running AI on Ultra-Low-Power Edge Devices
Serbia - TinyML: Running AI on Ultra-Low-Power Edge Devices
Bhutan - TinyML: Running AI on Ultra-Low-Power Edge Devices
Nepal - TinyML: Running AI on Ultra-Low-Power Edge Devices
Uzbekistan - TinyML: Running AI on Ultra-Low-Power Edge Devices