Course Code: flsaic
Duration: 14 hours
Prerequisites:
  • 对机器学习概念的基本理解
  • 熟悉数据隐私和安全基础知识

观众

  • 专注于隐私保护机器学习的数据科学家和 AI 研究人员
  • 处理敏感数据的医疗保健和财务专业人员
  • 对安全的 AI 协作方法感兴趣的 IT 和合规经理
Overview:

Federated Learning (FL) 是一种跨多个去中心化设备或伺服器训练机器学习模型的方法,其中包含本地数据样本,而无需交换它们。这种在保护数据隐私的同时训练模型的分散式方法在具有敏感数据的行业(如医疗保健和金融)尤其有价值。通过实现安全的 AI 协作,联合学习有助于实现稳健的模型开发,同时保护个人隐私并满足监管合规标准。

这种由讲师指导的现场培训(在线或现场)面向希望了解和实施联合学习技术以实现跨分散式数据源保护隐私的机器学习和协作 AI 解决方案的中级 AI 和数据专业人员。

在本次培训结束时,参与者将能够:

  • 了解联合学习的核心概念和优势。
  • 为 AI 模型实施分散式训练策略。
  • 应用联合学习技术来保护数据敏感型协作。
  • 探索医疗保健和金融领域联邦学习的案例研究和实际范例。

课程形式

  • 互动讲座和讨论。
  • 大量的练习和练习。
  • 在即时实验室环境中动手实施。

课程自定义选项

  • 要申请本课程的定制培训,请联系我们进行安排。
Course Outline:

介绍 Federated Learning

  • 什么是联合学习,它与集中式学习有何不同?
  • 联邦学习在安全 AI 协作中的优势
  • 敏感数据领域的使用案例和应用

Federated Learning 的核心元件

  • 联合数据、用户端和模型聚合
  • Communication 协定和更新
  • 在联合环境中处理异构性

资料隐私和安全 Federated Learning

  • 数据最小化和隐私原则
  • 保护模型更新的技术(例如,差分隐私)
  • 符合数据保护法规的联合学习

实施 Federated Learning

  • 设置联合学习环境
  • 使用联合框架进行分散式模型训练
  • 性能和准确性注意事项

Federated Learning 医疗保健

  • 医疗保健领域的安全数据共享和隐私问题
  • 用于医学研究和诊断的协作式 AI
  • 案例研究:医学成像和诊断中的联邦学习

Federated Learning 在 Finance 中

  • 使用联合学习进行安全的财务建模
  • 使用联合方法进行欺诈检测和风险分析
  • 金融机构内部安全数据协作的案例研究

挑战与未来 Federated Learning

  • 联邦学习中的技术和运营挑战
  • 联合 AI 的未来趋势和进步
  • 探索跨行业联合学习的机会

总结和后续步骤

Sites Published:

United Arab Emirates - Federated Learning for Secure AI Collaboration

Qatar - Federated Learning for Secure AI Collaboration

Egypt - Federated Learning for Secure AI Collaboration

Saudi Arabia - Federated Learning for Secure AI Collaboration

South Africa - Federated Learning for Secure AI Collaboration

Brasil - Federated Learning for Secure AI Collaboration

Canada - Federated Learning for Secure AI Collaboration

中国 - Federated Learning for Secure AI Collaboration

香港 - Federated Learning for Secure AI Collaboration

澳門 - Federated Learning for Secure AI Collaboration

台灣 - Federated Learning for Secure AI Collaboration

USA - Federated Learning for Secure AI Collaboration

Österreich - Federated Learning for Secure AI Collaboration

Schweiz - Federated Learning for Secure AI Collaboration

Deutschland - Federated Learning for Secure AI Collaboration

Czech Republic - Federated Learning for Secure AI Collaboration

Denmark - Federated Learning for Secure AI Collaboration

Estonia - Federated Learning for Secure AI Collaboration

Finland - Federated Learning for Secure AI Collaboration

Greece - Federated Learning for Secure AI Collaboration

Magyarország - Federated Learning for Secure AI Collaboration

Ireland - Federated Learning for Secure AI Collaboration

Luxembourg - Federated Learning for Secure AI Collaboration

Latvia - Federated Learning for Secure AI Collaboration

España - Federated Learning for Secure AI Collaboration

Italia - Federated Learning for Secure AI Collaboration

Lithuania - Federated Learning for Secure AI Collaboration

Nederland - Federated Learning for Secure AI Collaboration

Norway - Federated Learning for Secure AI Collaboration

Portugal - Federated Learning for Secure AI Collaboration

România - Federated Learning for Secure AI Collaboration

Sverige - Federated Learning for Secure AI Collaboration

Türkiye - Federated Learning for Secure AI Collaboration

Malta - Federated Learning for Secure AI Collaboration

Belgique - Federated Learning for Secure AI Collaboration

France - Federated Learning for Secure AI Collaboration

日本 - Federated Learning for Secure AI Collaboration

Australia - Federated Learning for Secure AI Collaboration

Malaysia - Federated Learning for Secure AI Collaboration

New Zealand - Federated Learning for Secure AI Collaboration

Philippines - Federated Learning for Secure AI Collaboration

Singapore - Federated Learning for Secure AI Collaboration

Thailand - Federated Learning for Secure AI Collaboration

Vietnam - Federated Learning for Secure AI Collaboration

India - Federated Learning for Secure AI Collaboration

Argentina - Federated Learning for Secure AI Collaboration

Chile - Federated Learning for Secure AI Collaboration

Costa Rica - Federated Learning for Secure AI Collaboration

Ecuador - Federated Learning for Secure AI Collaboration

Guatemala - Federated Learning for Secure AI Collaboration

Colombia - Federated Learning for Secure AI Collaboration

México - Federated Learning for Secure AI Collaboration

Panama - Federated Learning for Secure AI Collaboration

Peru - Federated Learning for Secure AI Collaboration

Uruguay - Federated Learning for Secure AI Collaboration

Venezuela - Federated Learning for Secure AI Collaboration

Polska - Federated Learning for Secure AI Collaboration

United Kingdom - Federated Learning for Secure AI Collaboration

South Korea - Federated Learning for Secure AI Collaboration

Pakistan - Federated Learning for Secure AI Collaboration

Sri Lanka - Federated Learning for Secure AI Collaboration

Bulgaria - Federated Learning for Secure AI Collaboration

Bolivia - Federated Learning for Secure AI Collaboration

Indonesia - Federated Learning for Secure AI Collaboration

Kazakhstan - Federated Learning for Secure AI Collaboration

Moldova - Federated Learning for Secure AI Collaboration

Morocco - Federated Learning for Secure AI Collaboration

Tunisia - Federated Learning for Secure AI Collaboration

Kuwait - Federated Learning for Secure AI Collaboration

Oman - Federated Learning for Secure AI Collaboration

Slovakia - Federated Learning for Secure AI Collaboration

Kenya - Federated Learning for Secure AI Collaboration

Nigeria - Federated Learning for Secure AI Collaboration

Botswana - Federated Learning for Secure AI Collaboration

Slovenia - Federated Learning for Secure AI Collaboration

Croatia - Federated Learning for Secure AI Collaboration

Serbia - Federated Learning for Secure AI Collaboration

Bhutan - Federated Learning for Secure AI Collaboration

Nepal - Federated Learning for Secure AI Collaboration

Uzbekistan - Federated Learning for Secure AI Collaboration