Course Code: flsaic
Duration: 14 hours
Prerequisites:
  • 對機器學習概念的基本理解
  • 熟悉數據隱私和安全基礎知識

觀眾

  • 專注於隱私保護機器學習的數據科學家和 AI 研究人員
  • 處理敏感數據的醫療保健和財務專業人員
  • 對安全的 AI 協作方法感興趣的 IT 和合規經理
Overview:

Federated Learning (FL) 是一種跨多個去中心化設備或伺服器訓練機器學習模型的方法,其中包含本地數據樣本,而無需交換它們。這種在保護數據隱私的同時訓練模型的分散式方法在具有敏感數據的行業(如醫療保健和金融)尤其有價值。通過實現安全的 AI 協作,聯合學習有助於實現穩健的模型開發,同時保護個人隱私並滿足監管合規標準。

這種由講師指導的現場培訓(在線或現場)面向希望瞭解和實施聯合學習技術以實現跨分散式數據源保護隱私的機器學習和協作 AI 解決方案的中級 AI 和數據專業人員。

在本次培訓結束時,參與者將能夠:

  • 瞭解聯合學習的核心概念和優勢。
  • 為 AI 模型實施分散式訓練策略。
  • 應用聯合學習技術來保護數據敏感型協作。
  • 探索醫療保健和金融領域聯邦學習的案例研究和實際範例。

課程形式

  • 互動講座和討論。
  • 大量的練習和練習。
  • 在即時實驗室環境中動手實施。

課程自定義選項

  • 要申請本課程的定製培訓,請聯繫我們進行安排。
Course Outline:

介紹 Federated Learning

  • 什麼是聯合學習,它與集中式學習有何不同?
  • 聯邦學習在安全 AI 協作中的優勢
  • 敏感數據領域的使用案例和應用

Federated Learning 的核心元件

  • 聯合數據、用戶端和模型聚合
  • Communication 協定和更新
  • 在聯合環境中處理異構性

資料隱私和安全 Federated Learning

  • 數據最小化和隱私原則
  • 保護模型更新的技術(例如,差分隱私)
  • 符合數據保護法規的聯合學習

實施 Federated Learning

  • 設置聯合學習環境
  • 使用聯合框架進行分散式模型訓練
  • 性能和準確性注意事項

Federated Learning 醫療保健

  • 醫療保健領域的安全數據共享和隱私問題
  • 用於醫學研究和診斷的協作式 AI
  • 案例研究:醫學成像和診斷中的聯邦學習

Federated Learning 在 Finance 中

  • 使用聯合學習進行安全的財務建模
  • 使用聯合方法進行欺詐檢測和風險分析
  • 金融機構內部安全數據協作的案例研究

挑戰與未來 Federated Learning

  • 聯邦學習中的技術和運營挑戰
  • 聯合 AI 的未來趨勢和進步
  • 探索跨行業聯合學習的機會

總結和後續步驟

Sites Published:

United Arab Emirates - Federated Learning for Secure AI Collaboration

Qatar - Federated Learning for Secure AI Collaboration

Egypt - Federated Learning for Secure AI Collaboration

Saudi Arabia - Federated Learning for Secure AI Collaboration

South Africa - Federated Learning for Secure AI Collaboration

Brasil - Federated Learning for Secure AI Collaboration

Canada - Federated Learning for Secure AI Collaboration

中国 - Federated Learning for Secure AI Collaboration

香港 - Federated Learning for Secure AI Collaboration

澳門 - Federated Learning for Secure AI Collaboration

台灣 - Federated Learning for Secure AI Collaboration

USA - Federated Learning for Secure AI Collaboration

Österreich - Federated Learning for Secure AI Collaboration

Schweiz - Federated Learning for Secure AI Collaboration

Deutschland - Federated Learning for Secure AI Collaboration

Czech Republic - Federated Learning for Secure AI Collaboration

Denmark - Federated Learning for Secure AI Collaboration

Estonia - Federated Learning for Secure AI Collaboration

Finland - Federated Learning for Secure AI Collaboration

Greece - Federated Learning for Secure AI Collaboration

Magyarország - Federated Learning for Secure AI Collaboration

Ireland - Federated Learning for Secure AI Collaboration

Luxembourg - Federated Learning for Secure AI Collaboration

Latvia - Federated Learning for Secure AI Collaboration

España - Federated Learning for Secure AI Collaboration

Italia - Federated Learning for Secure AI Collaboration

Lithuania - Federated Learning for Secure AI Collaboration

Nederland - Federated Learning for Secure AI Collaboration

Norway - Federated Learning for Secure AI Collaboration

Portugal - Federated Learning for Secure AI Collaboration

România - Federated Learning for Secure AI Collaboration

Sverige - Federated Learning for Secure AI Collaboration

Türkiye - Federated Learning for Secure AI Collaboration

Malta - Federated Learning for Secure AI Collaboration

Belgique - Federated Learning for Secure AI Collaboration

France - Federated Learning for Secure AI Collaboration

日本 - Federated Learning for Secure AI Collaboration

Australia - Federated Learning for Secure AI Collaboration

Malaysia - Federated Learning for Secure AI Collaboration

New Zealand - Federated Learning for Secure AI Collaboration

Philippines - Federated Learning for Secure AI Collaboration

Singapore - Federated Learning for Secure AI Collaboration

Thailand - Federated Learning for Secure AI Collaboration

Vietnam - Federated Learning for Secure AI Collaboration

India - Federated Learning for Secure AI Collaboration

Argentina - Federated Learning for Secure AI Collaboration

Chile - Federated Learning for Secure AI Collaboration

Costa Rica - Federated Learning for Secure AI Collaboration

Ecuador - Federated Learning for Secure AI Collaboration

Guatemala - Federated Learning for Secure AI Collaboration

Colombia - Federated Learning for Secure AI Collaboration

México - Federated Learning for Secure AI Collaboration

Panama - Federated Learning for Secure AI Collaboration

Peru - Federated Learning for Secure AI Collaboration

Uruguay - Federated Learning for Secure AI Collaboration

Venezuela - Federated Learning for Secure AI Collaboration

Polska - Federated Learning for Secure AI Collaboration

United Kingdom - Federated Learning for Secure AI Collaboration

South Korea - Federated Learning for Secure AI Collaboration

Pakistan - Federated Learning for Secure AI Collaboration

Sri Lanka - Federated Learning for Secure AI Collaboration

Bulgaria - Federated Learning for Secure AI Collaboration

Bolivia - Federated Learning for Secure AI Collaboration

Indonesia - Federated Learning for Secure AI Collaboration

Kazakhstan - Federated Learning for Secure AI Collaboration

Moldova - Federated Learning for Secure AI Collaboration

Morocco - Federated Learning for Secure AI Collaboration

Tunisia - Federated Learning for Secure AI Collaboration

Kuwait - Federated Learning for Secure AI Collaboration

Oman - Federated Learning for Secure AI Collaboration

Slovakia - Federated Learning for Secure AI Collaboration

Kenya - Federated Learning for Secure AI Collaboration

Nigeria - Federated Learning for Secure AI Collaboration

Botswana - Federated Learning for Secure AI Collaboration

Slovenia - Federated Learning for Secure AI Collaboration

Croatia - Federated Learning for Secure AI Collaboration

Serbia - Federated Learning for Secure AI Collaboration

Bhutan - Federated Learning for Secure AI Collaboration

Nepal - Federated Learning for Secure AI Collaboration

Uzbekistan - Federated Learning for Secure AI Collaboration