Course Code: finetuningnlp
Duration: 21 hours
Prerequisites:
  • 对 NLP 概念的基本理解
  • Python 个程式设计经验
  • 熟悉深度学习框架,如 TensorFlow 或 PyTorch

观众

  • 数据科学家
  • NLP 工程师
Overview:

微调 NLP 任务的预训练模型使开发人员能够将强大的语言表示形式用于特定应用程式,例如情感分析、摘要和机器翻译。本课程提供有关 GPT、BERT 和 T5 等模型的微调过程的深入指导,涵盖实现高性能 NLP 解决方案的关键技术和最佳实践。

这种由讲师指导的现场培训(在线或现场)面向希望通过对预先训练的语言模型进行有效微调来增强其 NLP 专案的中级专业人员。

在本次培训结束时,参与者将能够:

  • 了解 NLP 任务微调的基础知识。
  • 针对特定的 NLP 应用程式微调预训练模型,例如 GPT、BERT 和 T5。
  • 优化超参数以提高模型性能。
  • 在实际场景中评估和部署微调的模型。

课程形式

  • 互动讲座和讨论。
  • 大量的练习和练习。
  • 在即时实验室环境中动手实施。

课程自定义选项

  • 要申请本课程的定制培训,请联系我们进行安排。
Course Outline:

NLP 微调简介

  • 什么是微调?
  • 微调预训练语言模型的好处
  • 常用预训练模型(GPT、BERT、T5)概述

了解 NLP 任务

  • 情绪分析
  • 文本摘要
  • 机器翻译
  • 命名实体识别 (NER)

设置环境

  • 安装和配置 Python 和库
  • 使用 Hugging Face 个 Transformer 执行 NLP 任务
  • 载入和探索预训练模型

微调技术

  • 为 NLP 任务准备数据集
  • 分词和输入格式
  • 针对分类、生成和翻译任务进行微调

优化模型性能

  • 了解学习率和批量大小
  • 使用正则化技术
  • 使用指标评估模型性能

动手实验

  • 微调 BERT 以进行情感分析
  • 微调 T5 以进行文本摘要
  • 微调 GPT 以进行机器翻译

部署微调模型

  • 汇出和保存模型
  • 将模型整合到应用程式中
  • 在云平台上部署模型的基础知识

挑战和最佳实践

  • 在微调过程中避免过拟合
  • 处理不平衡的数据集
  • 确保实验的可重复性

NLP 微调的未来趋势

  • 新兴的预训练模型
  • NLP 迁移学习的进展
  • 探索多模态 NLP 应用程式

总结和后续步骤

Sites Published:

United Arab Emirates - Fine-Tuning for Natural Language Processing (NLP)

Qatar - Fine-Tuning for Natural Language Processing (NLP)

Egypt - Fine-Tuning for Natural Language Processing (NLP)

Saudi Arabia - Fine-Tuning for Natural Language Processing (NLP)

South Africa - Fine-Tuning for Natural Language Processing (NLP)

Brasil - Fine-Tuning for Natural Language Processing (NLP)

Canada - Fine-Tuning for Natural Language Processing (NLP)

中国 - Fine-Tuning for Natural Language Processing (NLP)

香港 - Fine-Tuning for Natural Language Processing (NLP)

澳門 - Fine-Tuning for Natural Language Processing (NLP)

台灣 - Fine-Tuning for Natural Language Processing (NLP)

USA - Fine-Tuning for Natural Language Processing (NLP)

Österreich - Fine-Tuning for Natural Language Processing (NLP)

Schweiz - Fine-Tuning for Natural Language Processing (NLP)

Deutschland - Fine-Tuning for Natural Language Processing (NLP)

Czech Republic - Fine-Tuning for Natural Language Processing (NLP)

Denmark - Fine-Tuning for Natural Language Processing (NLP)

Estonia - Fine-Tuning for Natural Language Processing (NLP)

Finland - Fine-Tuning for Natural Language Processing (NLP)

Greece - Fine-Tuning for Natural Language Processing (NLP)

Magyarország - Fine-Tuning for Natural Language Processing (NLP)

Ireland - Fine-Tuning for Natural Language Processing (NLP)

Luxembourg - Fine-Tuning for Natural Language Processing (NLP)

Latvia - Fine-Tuning for Natural Language Processing (NLP)

España - Fine-Tuning for Natural Language Processing (NLP)

Italia - Fine-Tuning for Natural Language Processing (NLP)

Lithuania - Fine-Tuning for Natural Language Processing (NLP)

Nederland - Fine-Tuning for Natural Language Processing (NLP)

Norway - Fine-Tuning for Natural Language Processing (NLP)

Portugal - Fine-Tuning for Natural Language Processing (NLP)

România - Fine-Tuning for Natural Language Processing (NLP)

Sverige - Fine-Tuning for Natural Language Processing (NLP)

Türkiye - Fine-Tuning for Natural Language Processing (NLP)

Malta - Fine-Tuning for Natural Language Processing (NLP)

Belgique - Fine-Tuning for Natural Language Processing (NLP)

France - Fine-Tuning for Natural Language Processing (NLP)

日本 - Fine-Tuning for Natural Language Processing (NLP)

Australia - Fine-Tuning for Natural Language Processing (NLP)

Malaysia - Fine-Tuning for Natural Language Processing (NLP)

New Zealand - Fine-Tuning for Natural Language Processing (NLP)

Philippines - Fine-Tuning for Natural Language Processing (NLP)

Singapore - Fine-Tuning for Natural Language Processing (NLP)

Thailand - Fine-Tuning for Natural Language Processing (NLP)

Vietnam - Fine-Tuning for Natural Language Processing (NLP)

India - Fine-Tuning for Natural Language Processing (NLP)

Argentina - Fine-Tuning for Natural Language Processing (NLP)

Chile - Fine-Tuning for Natural Language Processing (NLP)

Costa Rica - Fine-Tuning for Natural Language Processing (NLP)

Ecuador - Fine-Tuning for Natural Language Processing (NLP)

Guatemala - Fine-Tuning for Natural Language Processing (NLP)

Colombia - Fine-Tuning for Natural Language Processing (NLP)

México - Fine-Tuning for Natural Language Processing (NLP)

Panama - Fine-Tuning for Natural Language Processing (NLP)

Peru - Fine-Tuning for Natural Language Processing (NLP)

Uruguay - Fine-Tuning for Natural Language Processing (NLP)

Venezuela - Fine-Tuning for Natural Language Processing (NLP)

Polska - Fine-Tuning for Natural Language Processing (NLP)

United Kingdom - Fine-Tuning for Natural Language Processing (NLP)

South Korea - Fine-Tuning for Natural Language Processing (NLP)

Pakistan - Fine-Tuning for Natural Language Processing (NLP)

Sri Lanka - Fine-Tuning for Natural Language Processing (NLP)

Bulgaria - Fine-Tuning for Natural Language Processing (NLP)

Bolivia - Fine-Tuning for Natural Language Processing (NLP)

Indonesia - Fine-Tuning for Natural Language Processing (NLP)

Kazakhstan - Fine-Tuning for Natural Language Processing (NLP)

Moldova - Fine-Tuning for Natural Language Processing (NLP)

Morocco - Fine-Tuning for Natural Language Processing (NLP)

Tunisia - Fine-Tuning for Natural Language Processing (NLP)

Kuwait - Fine-Tuning for Natural Language Processing (NLP)

Oman - Fine-Tuning for Natural Language Processing (NLP)

Slovakia - Fine-Tuning for Natural Language Processing (NLP)

Kenya - Fine-Tuning for Natural Language Processing (NLP)

Nigeria - Fine-Tuning for Natural Language Processing (NLP)

Botswana - Fine-Tuning for Natural Language Processing (NLP)

Slovenia - Fine-Tuning for Natural Language Processing (NLP)

Croatia - Fine-Tuning for Natural Language Processing (NLP)

Serbia - Fine-Tuning for Natural Language Processing (NLP)

Bhutan - Fine-Tuning for Natural Language Processing (NLP)

Nepal - Fine-Tuning for Natural Language Processing (NLP)

Uzbekistan - Fine-Tuning for Natural Language Processing (NLP)