Course Code: finetuningnlp
Duration: 21 hours
Prerequisites:
  • 對 NLP 概念的基本理解
  • Python 個程式設計經驗
  • 熟悉深度學習框架,如 TensorFlow 或 PyTorch

觀眾

  • 數據科學家
  • NLP 工程師
Overview:

微調 NLP 任務的預訓練模型使開發人員能夠將強大的語言表示形式用於特定應用程式,例如情感分析、摘要和機器翻譯。本課程提供有關 GPT、BERT 和 T5 等模型的微調過程的深入指導,涵蓋實現高性能 NLP 解決方案的關鍵技術和最佳實踐。

這種由講師指導的現場培訓(在線或現場)面向希望通過對預先訓練的語言模型進行有效微調來增強其 NLP 專案的中級專業人員。

在本次培訓結束時,參與者將能夠:

  • 瞭解 NLP 任務微調的基礎知識。
  • 針對特定的 NLP 應用程式微調預訓練模型,例如 GPT、BERT 和 T5。
  • 優化超參數以提高模型性能。
  • 在實際場景中評估和部署微調的模型。

課程形式

  • 互動講座和討論。
  • 大量的練習和練習。
  • 在即時實驗室環境中動手實施。

課程自定義選項

  • 要申請本課程的定製培訓,請聯繫我們進行安排。
Course Outline:

NLP 微調簡介

  • 什麼是微調?
  • 微調預訓練語言模型的好處
  • 常用預訓練模型(GPT、BERT、T5)概述

瞭解 NLP 任務

  • 情緒分析
  • 文本摘要
  • 機器翻譯
  • 命名實體識別 (NER)

設置環境

  • 安裝和配置 Python 和庫
  • 使用 Hugging Face 個 Transformer 執行 NLP 任務
  • 載入和探索預訓練模型

微調技術

  • 為 NLP 任務準備數據集
  • 分詞和輸入格式
  • 針對分類、生成和翻譯任務進行微調

優化模型性能

  • 了解學習率和批量大小
  • 使用正則化技術
  • 使用指標評估模型性能

動手實驗

  • 微調 BERT 以進行情感分析
  • 微調 T5 以進行文本摘要
  • 微調 GPT 以進行機器翻譯

部署微調模型

  • 匯出和保存模型
  • 將模型整合到應用程式中
  • 在雲平臺上部署模型的基礎知識

挑戰和最佳實踐

  • 在微調過程中避免過擬合
  • 處理不平衡的數據集
  • 確保實驗的可重複性

NLP 微調的未來趨勢

  • 新興的預訓練模型
  • NLP 遷移學習的進展
  • 探索多模態 NLP 應用程式

總結和後續步驟

Sites Published:

United Arab Emirates - Fine-Tuning for Natural Language Processing (NLP)

Qatar - Fine-Tuning for Natural Language Processing (NLP)

Egypt - Fine-Tuning for Natural Language Processing (NLP)

Saudi Arabia - Fine-Tuning for Natural Language Processing (NLP)

South Africa - Fine-Tuning for Natural Language Processing (NLP)

Brasil - Fine-Tuning for Natural Language Processing (NLP)

Canada - Fine-Tuning for Natural Language Processing (NLP)

中国 - Fine-Tuning for Natural Language Processing (NLP)

香港 - Fine-Tuning for Natural Language Processing (NLP)

澳門 - Fine-Tuning for Natural Language Processing (NLP)

台灣 - Fine-Tuning for Natural Language Processing (NLP)

USA - Fine-Tuning for Natural Language Processing (NLP)

Österreich - Fine-Tuning for Natural Language Processing (NLP)

Schweiz - Fine-Tuning for Natural Language Processing (NLP)

Deutschland - Fine-Tuning for Natural Language Processing (NLP)

Czech Republic - Fine-Tuning for Natural Language Processing (NLP)

Denmark - Fine-Tuning for Natural Language Processing (NLP)

Estonia - Fine-Tuning for Natural Language Processing (NLP)

Finland - Fine-Tuning for Natural Language Processing (NLP)

Greece - Fine-Tuning for Natural Language Processing (NLP)

Magyarország - Fine-Tuning for Natural Language Processing (NLP)

Ireland - Fine-Tuning for Natural Language Processing (NLP)

Luxembourg - Fine-Tuning for Natural Language Processing (NLP)

Latvia - Fine-Tuning for Natural Language Processing (NLP)

España - Fine-Tuning for Natural Language Processing (NLP)

Italia - Fine-Tuning for Natural Language Processing (NLP)

Lithuania - Fine-Tuning for Natural Language Processing (NLP)

Nederland - Fine-Tuning for Natural Language Processing (NLP)

Norway - Fine-Tuning for Natural Language Processing (NLP)

Portugal - Fine-Tuning for Natural Language Processing (NLP)

România - Fine-Tuning for Natural Language Processing (NLP)

Sverige - Fine-Tuning for Natural Language Processing (NLP)

Türkiye - Fine-Tuning for Natural Language Processing (NLP)

Malta - Fine-Tuning for Natural Language Processing (NLP)

Belgique - Fine-Tuning for Natural Language Processing (NLP)

France - Fine-Tuning for Natural Language Processing (NLP)

日本 - Fine-Tuning for Natural Language Processing (NLP)

Australia - Fine-Tuning for Natural Language Processing (NLP)

Malaysia - Fine-Tuning for Natural Language Processing (NLP)

New Zealand - Fine-Tuning for Natural Language Processing (NLP)

Philippines - Fine-Tuning for Natural Language Processing (NLP)

Singapore - Fine-Tuning for Natural Language Processing (NLP)

Thailand - Fine-Tuning for Natural Language Processing (NLP)

Vietnam - Fine-Tuning for Natural Language Processing (NLP)

India - Fine-Tuning for Natural Language Processing (NLP)

Argentina - Fine-Tuning for Natural Language Processing (NLP)

Chile - Fine-Tuning for Natural Language Processing (NLP)

Costa Rica - Fine-Tuning for Natural Language Processing (NLP)

Ecuador - Fine-Tuning for Natural Language Processing (NLP)

Guatemala - Fine-Tuning for Natural Language Processing (NLP)

Colombia - Fine-Tuning for Natural Language Processing (NLP)

México - Fine-Tuning for Natural Language Processing (NLP)

Panama - Fine-Tuning for Natural Language Processing (NLP)

Peru - Fine-Tuning for Natural Language Processing (NLP)

Uruguay - Fine-Tuning for Natural Language Processing (NLP)

Venezuela - Fine-Tuning for Natural Language Processing (NLP)

Polska - Fine-Tuning for Natural Language Processing (NLP)

United Kingdom - Fine-Tuning for Natural Language Processing (NLP)

South Korea - Fine-Tuning for Natural Language Processing (NLP)

Pakistan - Fine-Tuning for Natural Language Processing (NLP)

Sri Lanka - Fine-Tuning for Natural Language Processing (NLP)

Bulgaria - Fine-Tuning for Natural Language Processing (NLP)

Bolivia - Fine-Tuning for Natural Language Processing (NLP)

Indonesia - Fine-Tuning for Natural Language Processing (NLP)

Kazakhstan - Fine-Tuning for Natural Language Processing (NLP)

Moldova - Fine-Tuning for Natural Language Processing (NLP)

Morocco - Fine-Tuning for Natural Language Processing (NLP)

Tunisia - Fine-Tuning for Natural Language Processing (NLP)

Kuwait - Fine-Tuning for Natural Language Processing (NLP)

Oman - Fine-Tuning for Natural Language Processing (NLP)

Slovakia - Fine-Tuning for Natural Language Processing (NLP)

Kenya - Fine-Tuning for Natural Language Processing (NLP)

Nigeria - Fine-Tuning for Natural Language Processing (NLP)

Botswana - Fine-Tuning for Natural Language Processing (NLP)

Slovenia - Fine-Tuning for Natural Language Processing (NLP)

Croatia - Fine-Tuning for Natural Language Processing (NLP)

Serbia - Fine-Tuning for Natural Language Processing (NLP)

Bhutan - Fine-Tuning for Natural Language Processing (NLP)

Nepal - Fine-Tuning for Natural Language Processing (NLP)

Uzbekistan - Fine-Tuning for Natural Language Processing (NLP)