- 具备Python程式设计经验
- 了解基本感测器技术(如LiDAR、摄影机、RADAR)
- 熟悉ROS与资料处理
目标受众
- 从事自主导航系统的感测器融合专家
- 专注于多感测器整合与资料处理的AI工程师
- 自动驾驶感知领域的研究人员
Multi-Sensor Data Fusion for Autonomous Navigation 是一门专业课程,旨在教导专家如何整合来自多个感测器的数据,以提升自动驾驶车辆的导航、感知和决策能力。
这门由讲师主导的培训(线上或线下)针对高级感测器融合专家和AI工程师,他们希望开发多感测器融合算法,并优化自动驾驶系统的即时导航。
在培训结束时,参与者将能够:
- 理解多感测器数据融合的基本原理和挑战。
- 实现感测器融合算法,用于即时自动导航。
- 整合来自LiDAR、摄像头和RADAR的数据,以增强感知能力。
- 分析并评估融合系统在各种条件下的性能。
- 开发实用的解决方案,用于感测器噪声降低和数据对齐。
课程形式
- 互动式讲座和讨论。
- 大量练习和实践。
- 在即时实验室环境中进行实际操作。
课程定制选项
- 如需为此课程定制培训,请联系我们安排。
多传感器数据融合简介
- 数据融合在自主导航中的重要性
- 多传感器整合的挑战
- 数据融合在实时感知中的应用
传感器技术与数据特性
- LiDAR:点云生成与处理
- 相机:视觉数据捕捉与图像处理
- RADAR:物体检测与速度估算
- 惯性测量单元(IMUs):运动追踪
数据融合基础
- 理论基础:卡尔曼滤波器、贝叶斯推论
- 数据关联与对齐技术
- 处理传感器噪声与不确定性
自主导航的融合算法
- 卡尔曼滤波器与扩展卡尔曼滤波器(EKF)
- 非线性系统的粒子滤波器
- 复杂动力学的无迹卡尔曼滤波器(UKF)
- 使用最近邻与联合概率数据关联(JPDA)进行数据关联
实践应用
- 整合LiDAR与相机数据进行物体检测
- 融合RADAR与相机数据进行速度估算
- 结合GPS与IMU数据进行精确定位
实时数据处理与同步
- 时间戳记与数据同步方法
- 延迟处理与实时性能优化
- 管理异步传感器的数据
高级技术与挑战
- 深度学习在数据融合中的应用
- 多模态数据整合与特征提取
- 处理传感器故障与数据退化
性能评估与优化
- 融合准确性的定量评估指标
- 不同环境条件下的性能分析
- 提高系统的稳健性与容错能力
案例研究与实际应用
- 自主车辆原型中的融合技术
- 成功部署的传感器融合算法
- 工作坊:实现多传感器融合流程
总结与下一步
United Arab Emirates - Multi-Sensor Data Fusion for Autonomous Navigation
Qatar - Multi-Sensor Data Fusion for Autonomous Navigation
Egypt - Multi-Sensor Data Fusion for Autonomous Navigation
Saudi Arabia - Multi-Sensor Data Fusion for Autonomous Navigation
South Africa - Multi-Sensor Data Fusion for Autonomous Navigation
Brasil - Multi-Sensor Data Fusion for Autonomous Navigation
Canada - Multi-Sensor Data Fusion for Autonomous Navigation
中国 - Multi-Sensor Data Fusion for Autonomous Navigation
香港 - Multi-Sensor Data Fusion for Autonomous Navigation
澳門 - Multi-Sensor Data Fusion for Autonomous Navigation
台灣 - Multi-Sensor Data Fusion for Autonomous Navigation
USA - Multi-Sensor Data Fusion for Autonomous Navigation
Österreich - Multi-Sensor Data Fusion for Autonomous Navigation
Schweiz - Multi-Sensor Data Fusion for Autonomous Navigation
Deutschland - Multi-Sensor Data Fusion for Autonomous Navigation
Czech Republic - Multi-Sensor Data Fusion for Autonomous Navigation
Denmark - Multi-Sensor Data Fusion for Autonomous Navigation
Estonia - Multi-Sensor Data Fusion for Autonomous Navigation
Finland - Multi-Sensor Data Fusion for Autonomous Navigation
Greece - Multi-Sensor Data Fusion for Autonomous Navigation
Magyarország - Multi-Sensor Data Fusion for Autonomous Navigation
Ireland - Multi-Sensor Data Fusion for Autonomous Navigation
Luxembourg - Multi-Sensor Data Fusion for Autonomous Navigation
Latvia - Multi-Sensor Data Fusion for Autonomous Navigation
España - Multi-Sensor Data Fusion for Autonomous Navigation
Italia - Multi-Sensor Data Fusion for Autonomous Navigation
Lithuania - Multi-Sensor Data Fusion for Autonomous Navigation
Nederland - Multi-Sensor Data Fusion for Autonomous Navigation
Norway - Multi-Sensor Data Fusion for Autonomous Navigation
Portugal - Multi-Sensor Data Fusion for Autonomous Navigation
România - Multi-Sensor Data Fusion for Autonomous Navigation
Sverige - Multi-Sensor Data Fusion for Autonomous Navigation
Türkiye - Multi-Sensor Data Fusion for Autonomous Navigation
Malta - Multi-Sensor Data Fusion for Autonomous Navigation
Belgique - Multi-Sensor Data Fusion for Autonomous Navigation
France - Multi-Sensor Data Fusion for Autonomous Navigation
日本 - Multi-Sensor Data Fusion for Autonomous Navigation
Australia - Multi-Sensor Data Fusion for Autonomous Navigation
Malaysia - Multi-Sensor Data Fusion for Autonomous Navigation
New Zealand - Multi-Sensor Data Fusion for Autonomous Navigation
Philippines - Multi-Sensor Data Fusion for Autonomous Navigation
Singapore - Multi-Sensor Data Fusion for Autonomous Navigation
Thailand - Multi-Sensor Data Fusion for Autonomous Navigation
Vietnam - Multi-Sensor Data Fusion for Autonomous Navigation
India - Multi-Sensor Data Fusion for Autonomous Navigation
Argentina - Multi-Sensor Data Fusion for Autonomous Navigation
Chile - Multi-Sensor Data Fusion for Autonomous Navigation
Costa Rica - Multi-Sensor Data Fusion for Autonomous Navigation
Ecuador - Multi-Sensor Data Fusion for Autonomous Navigation
Guatemala - Multi-Sensor Data Fusion for Autonomous Navigation
Colombia - Multi-Sensor Data Fusion for Autonomous Navigation
México - Multi-Sensor Data Fusion for Autonomous Navigation
Panama - Multi-Sensor Data Fusion for Autonomous Navigation
Peru - Multi-Sensor Data Fusion for Autonomous Navigation
Uruguay - Multi-Sensor Data Fusion for Autonomous Navigation
Venezuela - Multi-Sensor Data Fusion for Autonomous Navigation
Polska - Multi-Sensor Data Fusion for Autonomous Navigation
United Kingdom - Multi-Sensor Data Fusion for Autonomous Navigation
South Korea - Multi-Sensor Data Fusion for Autonomous Navigation
Pakistan - Multi-Sensor Data Fusion for Autonomous Navigation
Sri Lanka - Multi-Sensor Data Fusion for Autonomous Navigation
Bulgaria - Multi-Sensor Data Fusion for Autonomous Navigation
Bolivia - Multi-Sensor Data Fusion for Autonomous Navigation
Indonesia - Multi-Sensor Data Fusion for Autonomous Navigation
Kazakhstan - Multi-Sensor Data Fusion for Autonomous Navigation
Moldova - Multi-Sensor Data Fusion for Autonomous Navigation
Morocco - Multi-Sensor Data Fusion for Autonomous Navigation
Tunisia - Multi-Sensor Data Fusion for Autonomous Navigation
Kuwait - Multi-Sensor Data Fusion for Autonomous Navigation
Oman - Multi-Sensor Data Fusion for Autonomous Navigation
Slovakia - Multi-Sensor Data Fusion for Autonomous Navigation
Kenya - Multi-Sensor Data Fusion for Autonomous Navigation
Nigeria - Multi-Sensor Data Fusion for Autonomous Navigation
Botswana - Multi-Sensor Data Fusion for Autonomous Navigation
Slovenia - Multi-Sensor Data Fusion for Autonomous Navigation
Croatia - Multi-Sensor Data Fusion for Autonomous Navigation
Serbia - Multi-Sensor Data Fusion for Autonomous Navigation
Bhutan - Multi-Sensor Data Fusion for Autonomous Navigation
Nepal - Multi-Sensor Data Fusion for Autonomous Navigation
Uzbekistan - Multi-Sensor Data Fusion for Autonomous Navigation