- 具備Python程式設計經驗
- 了解基本感測器技術(如LiDAR、攝影機、RADAR)
- 熟悉ROS與資料處理
目標受眾
- 從事自主導航系統的感測器融合專家
- 專注於多感測器整合與資料處理的AI工程師
- 自動駕駛感知領域的研究人員
Multi-Sensor Data Fusion for Autonomous Navigation 是一門專業課程,旨在教導專家如何整合來自多個感測器的數據,以提升自動駕駛車輛的導航、感知和決策能力。
這門由講師主導的培訓(線上或線下)針對高級感測器融合專家和AI工程師,他們希望開發多感測器融合算法,並優化自動駕駛系統的即時導航。
在培訓結束時,參與者將能夠:
- 理解多感測器數據融合的基本原理和挑戰。
- 實現感測器融合算法,用於即時自動導航。
- 整合來自LiDAR、攝像頭和RADAR的數據,以增強感知能力。
- 分析並評估融合系統在各種條件下的性能。
- 開發實用的解決方案,用於感測器噪聲降低和數據對齊。
課程形式
- 互動式講座和討論。
- 大量練習和實踐。
- 在即時實驗室環境中進行實際操作。
課程定制選項
- 如需為此課程定制培訓,請聯繫我們安排。
多傳感器數據融合簡介
- 數據融合在自主導航中的重要性
- 多傳感器整合的挑戰
- 數據融合在實時感知中的應用
傳感器技術與數據特性
- LiDAR:點雲生成與處理
- 相機:視覺數據捕捉與圖像處理
- RADAR:物體檢測與速度估算
- 慣性測量單元(IMUs):運動追蹤
數據融合基礎
- 理論基礎:卡爾曼濾波器、貝葉斯推論
- 數據關聯與對齊技術
- 處理傳感器噪聲與不確定性
自主導航的融合算法
- 卡爾曼濾波器與擴展卡爾曼濾波器(EKF)
- 非線性系統的粒子濾波器
- 複雜動力學的無跡卡爾曼濾波器(UKF)
- 使用最近鄰與聯合概率數據關聯(JPDA)進行數據關聯
實踐應用
- 整合LiDAR與相機數據進行物體檢測
- 融合RADAR與相機數據進行速度估算
- 結合GPS與IMU數據進行精確定位
實時數據處理與同步
- 時間戳記與數據同步方法
- 延遲處理與實時性能優化
- 管理異步傳感器的數據
高級技術與挑戰
- 深度學習在數據融合中的應用
- 多模態數據整合與特徵提取
- 處理傳感器故障與數據退化
性能評估與優化
- 融合準確性的定量評估指標
- 不同環境條件下的性能分析
- 提高系統的穩健性與容錯能力
案例研究與實際應用
- 自主車輛原型中的融合技術
- 成功部署的傳感器融合算法
- 工作坊:實現多傳感器融合流程
總結與下一步
United Arab Emirates - Multi-Sensor Data Fusion for Autonomous Navigation
Qatar - Multi-Sensor Data Fusion for Autonomous Navigation
Egypt - Multi-Sensor Data Fusion for Autonomous Navigation
Saudi Arabia - Multi-Sensor Data Fusion for Autonomous Navigation
South Africa - Multi-Sensor Data Fusion for Autonomous Navigation
Brasil - Multi-Sensor Data Fusion for Autonomous Navigation
Canada - Multi-Sensor Data Fusion for Autonomous Navigation
中国 - Multi-Sensor Data Fusion for Autonomous Navigation
香港 - Multi-Sensor Data Fusion for Autonomous Navigation
澳門 - Multi-Sensor Data Fusion for Autonomous Navigation
台灣 - Multi-Sensor Data Fusion for Autonomous Navigation
USA - Multi-Sensor Data Fusion for Autonomous Navigation
Österreich - Multi-Sensor Data Fusion for Autonomous Navigation
Schweiz - Multi-Sensor Data Fusion for Autonomous Navigation
Deutschland - Multi-Sensor Data Fusion for Autonomous Navigation
Czech Republic - Multi-Sensor Data Fusion for Autonomous Navigation
Denmark - Multi-Sensor Data Fusion for Autonomous Navigation
Estonia - Multi-Sensor Data Fusion for Autonomous Navigation
Finland - Multi-Sensor Data Fusion for Autonomous Navigation
Greece - Multi-Sensor Data Fusion for Autonomous Navigation
Magyarország - Multi-Sensor Data Fusion for Autonomous Navigation
Ireland - Multi-Sensor Data Fusion for Autonomous Navigation
Luxembourg - Multi-Sensor Data Fusion for Autonomous Navigation
Latvia - Multi-Sensor Data Fusion for Autonomous Navigation
España - Multi-Sensor Data Fusion for Autonomous Navigation
Italia - Multi-Sensor Data Fusion for Autonomous Navigation
Lithuania - Multi-Sensor Data Fusion for Autonomous Navigation
Nederland - Multi-Sensor Data Fusion for Autonomous Navigation
Norway - Multi-Sensor Data Fusion for Autonomous Navigation
Portugal - Multi-Sensor Data Fusion for Autonomous Navigation
România - Multi-Sensor Data Fusion for Autonomous Navigation
Sverige - Multi-Sensor Data Fusion for Autonomous Navigation
Türkiye - Multi-Sensor Data Fusion for Autonomous Navigation
Malta - Multi-Sensor Data Fusion for Autonomous Navigation
Belgique - Multi-Sensor Data Fusion for Autonomous Navigation
France - Multi-Sensor Data Fusion for Autonomous Navigation
日本 - Multi-Sensor Data Fusion for Autonomous Navigation
Australia - Multi-Sensor Data Fusion for Autonomous Navigation
Malaysia - Multi-Sensor Data Fusion for Autonomous Navigation
New Zealand - Multi-Sensor Data Fusion for Autonomous Navigation
Philippines - Multi-Sensor Data Fusion for Autonomous Navigation
Singapore - Multi-Sensor Data Fusion for Autonomous Navigation
Thailand - Multi-Sensor Data Fusion for Autonomous Navigation
Vietnam - Multi-Sensor Data Fusion for Autonomous Navigation
India - Multi-Sensor Data Fusion for Autonomous Navigation
Argentina - Multi-Sensor Data Fusion for Autonomous Navigation
Chile - Multi-Sensor Data Fusion for Autonomous Navigation
Costa Rica - Multi-Sensor Data Fusion for Autonomous Navigation
Ecuador - Multi-Sensor Data Fusion for Autonomous Navigation
Guatemala - Multi-Sensor Data Fusion for Autonomous Navigation
Colombia - Multi-Sensor Data Fusion for Autonomous Navigation
México - Multi-Sensor Data Fusion for Autonomous Navigation
Panama - Multi-Sensor Data Fusion for Autonomous Navigation
Peru - Multi-Sensor Data Fusion for Autonomous Navigation
Uruguay - Multi-Sensor Data Fusion for Autonomous Navigation
Venezuela - Multi-Sensor Data Fusion for Autonomous Navigation
Polska - Multi-Sensor Data Fusion for Autonomous Navigation
United Kingdom - Multi-Sensor Data Fusion for Autonomous Navigation
South Korea - Multi-Sensor Data Fusion for Autonomous Navigation
Pakistan - Multi-Sensor Data Fusion for Autonomous Navigation
Sri Lanka - Multi-Sensor Data Fusion for Autonomous Navigation
Bulgaria - Multi-Sensor Data Fusion for Autonomous Navigation
Bolivia - Multi-Sensor Data Fusion for Autonomous Navigation
Indonesia - Multi-Sensor Data Fusion for Autonomous Navigation
Kazakhstan - Multi-Sensor Data Fusion for Autonomous Navigation
Moldova - Multi-Sensor Data Fusion for Autonomous Navigation
Morocco - Multi-Sensor Data Fusion for Autonomous Navigation
Tunisia - Multi-Sensor Data Fusion for Autonomous Navigation
Kuwait - Multi-Sensor Data Fusion for Autonomous Navigation
Oman - Multi-Sensor Data Fusion for Autonomous Navigation
Slovakia - Multi-Sensor Data Fusion for Autonomous Navigation
Kenya - Multi-Sensor Data Fusion for Autonomous Navigation
Nigeria - Multi-Sensor Data Fusion for Autonomous Navigation
Botswana - Multi-Sensor Data Fusion for Autonomous Navigation
Slovenia - Multi-Sensor Data Fusion for Autonomous Navigation
Croatia - Multi-Sensor Data Fusion for Autonomous Navigation
Serbia - Multi-Sensor Data Fusion for Autonomous Navigation
Bhutan - Multi-Sensor Data Fusion for Autonomous Navigation
Nepal - Multi-Sensor Data Fusion for Autonomous Navigation
Uzbekistan - Multi-Sensor Data Fusion for Autonomous Navigation