- 了解机器学习基础知识和神经网路
- 具备模型微调和迁移学习的经验
- 熟悉大型语言模型(LLMs)和深度学习框架(例如PyTorch, TensorFlow)
目标受众
- 机器学习工程师
- AI开发人员
- 数据科学家
QLoRA 是一种先进的技术,通过利用量化方法来微调大型语言模型(LLMs),提供了一种更高效的方式来微调这些模型,而无需承担巨大的计算成本。本次培训将涵盖使用 QLoRA 微调 LLMs 的理论基础和实际应用。
这是一个由讲师主导的培训(线上或线下),针对中高级别的机器学习工程师、AI 开发者和数据科学家,他们希望学习如何使用 QLoRA 来高效地微调大型模型,以适应特定任务和自定义需求。
在培训结束时,参与者将能够:
- 理解 QLoRA 和量化技术在 LLMs 中的理论基础。
- 在微调大型语言模型时,实现 QLoRA 以应用于特定领域。
- 在有限的计算资源下,使用量化技术优化微调性能。
- 高效地部署和评估微调后的模型,应用于实际场景。
课程形式
- 互动式讲座和讨论。
- 大量的练习和实践。
- 在即时实验室环境中进行动手操作。
课程定制选项
- 如需为此课程定制培训,请联系我们安排。
QLoRA与量化简介
- 量化概述及其在模型优化中的作用
- QLoRA框架介绍及其优势
- QLoRA与传统微调方法的关键差异
Large Language Models (LLMs)基础知识
- LLM简介及其架构
- 大规模微调大型模型的挑战
- 量化如何帮助克服LLM微调中的计算限制
为Fine-Tuning LLM实施QLoRA
- 设置QLoRA框架和环境
- 准备用于QLoRA微调的数据集
- 使用Python和PyTorch/TensorFlow在LLM上实施QLoRA的逐步指南
使用QLoRA优化Fine-Tuning性能
- 如何平衡模型准确性和量化性能
- 在微调期间减少计算成本和内存使用的技术
- 使用最低硬件需求进行微调的策略
评估微调模型
- 如何评估微调模型的有效性
- 语言模型的常见评估指标
- 微调后优化模型性能并解决问题
部署和扩展微调模型
- 将量化LLM部署到生产环境的最佳实践
- 扩展部署以处理实时请求
- 用于模型部署和监控的工具和框架
实际Use Case和案例研究
- 案例研究:为客户支持和NLP任务微调LLM
- 在医疗、金融和电子商务等行业中微调LLM的示例
- 从实际部署QLoRA模型中学到的经验教训
总结与下一步
United Arab Emirates - Fine-Tuning Large Language Models Using QLoRA
Qatar - Fine-Tuning Large Language Models Using QLoRA
Egypt - Fine-Tuning Large Language Models Using QLoRA
Saudi Arabia - Fine-Tuning Large Language Models Using QLoRA
South Africa - Fine-Tuning Large Language Models Using QLoRA
Brasil - Fine-Tuning Large Language Models Using QLoRA
Canada - Fine-Tuning Large Language Models Using QLoRA
中国 - Fine-Tuning Large Language Models Using QLoRA
香港 - Fine-Tuning Large Language Models Using QLoRA
澳門 - Fine-Tuning Large Language Models Using QLoRA
台灣 - Fine-Tuning Large Language Models Using QLoRA
USA - Fine-Tuning Large Language Models Using QLoRA
Österreich - Fine-Tuning Large Language Models Using QLoRA
Schweiz - Fine-Tuning Large Language Models Using QLoRA
Deutschland - Fine-Tuning Large Language Models Using QLoRA
Czech Republic - Fine-Tuning Large Language Models Using QLoRA
Denmark - Fine-Tuning Large Language Models Using QLoRA
Estonia - Fine-Tuning Large Language Models Using QLoRA
Finland - Fine-Tuning Large Language Models Using QLoRA
Greece - Fine-Tuning Large Language Models Using QLoRA
Magyarország - Fine-Tuning Large Language Models Using QLoRA
Ireland - Fine-Tuning Large Language Models Using QLoRA
Luxembourg - Fine-Tuning Large Language Models Using QLoRA
Latvia - Fine-Tuning Large Language Models Using QLoRA
España - Fine-Tuning Large Language Models Using QLoRA
Italia - Fine-Tuning Large Language Models Using QLoRA
Lithuania - Fine-Tuning Large Language Models Using QLoRA
Nederland - Fine-Tuning Large Language Models Using QLoRA
Norway - Fine-Tuning Large Language Models Using QLoRA
Portugal - Fine-Tuning Large Language Models Using QLoRA
România - Fine-Tuning Large Language Models Using QLoRA
Sverige - Fine-Tuning Large Language Models Using QLoRA
Türkiye - Fine-Tuning Large Language Models Using QLoRA
Malta - Fine-Tuning Large Language Models Using QLoRA
Belgique - Fine-Tuning Large Language Models Using QLoRA
France - Fine-Tuning Large Language Models Using QLoRA
日本 - Fine-Tuning Large Language Models Using QLoRA
Australia - Fine-Tuning Large Language Models Using QLoRA
Malaysia - Fine-Tuning Large Language Models Using QLoRA
New Zealand - Fine-Tuning Large Language Models Using QLoRA
Philippines - Fine-Tuning Large Language Models Using QLoRA
Singapore - Fine-Tuning Large Language Models Using QLoRA
Thailand - Fine-Tuning Large Language Models Using QLoRA
Vietnam - Fine-Tuning Large Language Models Using QLoRA
India - Fine-Tuning Large Language Models Using QLoRA
Argentina - Fine-Tuning Large Language Models Using QLoRA
Chile - Fine-Tuning Large Language Models Using QLoRA
Costa Rica - Fine-Tuning Large Language Models Using QLoRA
Ecuador - Fine-Tuning Large Language Models Using QLoRA
Guatemala - Fine-Tuning Large Language Models Using QLoRA
Colombia - Fine-Tuning Large Language Models Using QLoRA
México - Fine-Tuning Large Language Models Using QLoRA
Panama - Fine-Tuning Large Language Models Using QLoRA
Peru - Fine-Tuning Large Language Models Using QLoRA
Uruguay - Fine-Tuning Large Language Models Using QLoRA
Venezuela - Fine-Tuning Large Language Models Using QLoRA
Polska - Fine-Tuning Large Language Models Using QLoRA
United Kingdom - Fine-Tuning Large Language Models Using QLoRA
South Korea - Fine-Tuning Large Language Models Using QLoRA
Pakistan - Fine-Tuning Large Language Models Using QLoRA
Sri Lanka - Fine-Tuning Large Language Models Using QLoRA
Bulgaria - Fine-Tuning Large Language Models Using QLoRA
Bolivia - Fine-Tuning Large Language Models Using QLoRA
Indonesia - Fine-Tuning Large Language Models Using QLoRA
Kazakhstan - Fine-Tuning Large Language Models Using QLoRA
Moldova - Fine-Tuning Large Language Models Using QLoRA
Morocco - Fine-Tuning Large Language Models Using QLoRA
Tunisia - Fine-Tuning Large Language Models Using QLoRA
Kuwait - Fine-Tuning Large Language Models Using QLoRA
Oman - Fine-Tuning Large Language Models Using QLoRA
Slovakia - Fine-Tuning Large Language Models Using QLoRA
Kenya - Fine-Tuning Large Language Models Using QLoRA
Nigeria - Fine-Tuning Large Language Models Using QLoRA
Botswana - Fine-Tuning Large Language Models Using QLoRA
Slovenia - Fine-Tuning Large Language Models Using QLoRA
Croatia - Fine-Tuning Large Language Models Using QLoRA
Serbia - Fine-Tuning Large Language Models Using QLoRA
Bhutan - Fine-Tuning Large Language Models Using QLoRA