- 了解機器學習基礎知識和神經網路
- 具備模型微調和遷移學習的經驗
- 熟悉大型語言模型(LLMs)和深度學習框架(例如PyTorch, TensorFlow)
目標受眾
- 機器學習工程師
- AI開發人員
- 數據科學家
QLoRA 是一種先進的技術,通過利用量化方法來微調大型語言模型(LLMs),提供了一種更高效的方式來微調這些模型,而無需承擔巨大的計算成本。本次培訓將涵蓋使用 QLoRA 微調 LLMs 的理論基礎和實際應用。
這是一個由講師主導的培訓(線上或線下),針對中高級別的機器學習工程師、AI 開發者和數據科學家,他們希望學習如何使用 QLoRA 來高效地微調大型模型,以適應特定任務和自定義需求。
在培訓結束時,參與者將能夠:
- 理解 QLoRA 和量化技術在 LLMs 中的理論基礎。
- 在微調大型語言模型時,實現 QLoRA 以應用於特定領域。
- 在有限的計算資源下,使用量化技術優化微調性能。
- 高效地部署和評估微調後的模型,應用於實際場景。
課程形式
- 互動式講座和討論。
- 大量的練習和實踐。
- 在即時實驗室環境中進行動手操作。
課程定制選項
- 如需為此課程定制培訓,請聯繫我們安排。
QLoRA與量化簡介
- 量化概述及其在模型優化中的作用
- QLoRA框架介紹及其優勢
- QLoRA與傳統微調方法的關鍵差異
Large Language Models (LLMs)基礎知識
- LLM簡介及其架構
- 大規模微調大型模型的挑戰
- 量化如何幫助克服LLM微調中的計算限制
為Fine-Tuning LLM實施QLoRA
- 設置QLoRA框架和環境
- 準備用於QLoRA微調的數據集
- 使用Python和PyTorch/TensorFlow在LLM上實施QLoRA的逐步指南
使用QLoRA優化Fine-Tuning性能
- 如何平衡模型準確性和量化性能
- 在微調期間減少計算成本和內存使用的技術
- 使用最低硬件需求進行微調的策略
評估微調模型
- 如何評估微調模型的有效性
- 語言模型的常見評估指標
- 微調後優化模型性能並解決問題
部署和擴展微調模型
- 將量化LLM部署到生產環境的最佳實踐
- 擴展部署以處理實時請求
- 用於模型部署和監控的工具和框架
實際Use Case和案例研究
- 案例研究:為客戶支持和NLP任務微調LLM
- 在醫療、金融和電子商務等行業中微調LLM的示例
- 從實際部署QLoRA模型中學到的經驗教訓
總結與下一步
United Arab Emirates - Fine-Tuning Large Language Models Using QLoRA
Qatar - Fine-Tuning Large Language Models Using QLoRA
Egypt - Fine-Tuning Large Language Models Using QLoRA
Saudi Arabia - Fine-Tuning Large Language Models Using QLoRA
South Africa - Fine-Tuning Large Language Models Using QLoRA
Brasil - Fine-Tuning Large Language Models Using QLoRA
Canada - Fine-Tuning Large Language Models Using QLoRA
中国 - Fine-Tuning Large Language Models Using QLoRA
香港 - Fine-Tuning Large Language Models Using QLoRA
澳門 - Fine-Tuning Large Language Models Using QLoRA
台灣 - Fine-Tuning Large Language Models Using QLoRA
USA - Fine-Tuning Large Language Models Using QLoRA
Österreich - Fine-Tuning Large Language Models Using QLoRA
Schweiz - Fine-Tuning Large Language Models Using QLoRA
Deutschland - Fine-Tuning Large Language Models Using QLoRA
Czech Republic - Fine-Tuning Large Language Models Using QLoRA
Denmark - Fine-Tuning Large Language Models Using QLoRA
Estonia - Fine-Tuning Large Language Models Using QLoRA
Finland - Fine-Tuning Large Language Models Using QLoRA
Greece - Fine-Tuning Large Language Models Using QLoRA
Magyarország - Fine-Tuning Large Language Models Using QLoRA
Ireland - Fine-Tuning Large Language Models Using QLoRA
Luxembourg - Fine-Tuning Large Language Models Using QLoRA
Latvia - Fine-Tuning Large Language Models Using QLoRA
España - Fine-Tuning Large Language Models Using QLoRA
Italia - Fine-Tuning Large Language Models Using QLoRA
Lithuania - Fine-Tuning Large Language Models Using QLoRA
Nederland - Fine-Tuning Large Language Models Using QLoRA
Norway - Fine-Tuning Large Language Models Using QLoRA
Portugal - Fine-Tuning Large Language Models Using QLoRA
România - Fine-Tuning Large Language Models Using QLoRA
Sverige - Fine-Tuning Large Language Models Using QLoRA
Türkiye - Fine-Tuning Large Language Models Using QLoRA
Malta - Fine-Tuning Large Language Models Using QLoRA
Belgique - Fine-Tuning Large Language Models Using QLoRA
France - Fine-Tuning Large Language Models Using QLoRA
日本 - Fine-Tuning Large Language Models Using QLoRA
Australia - Fine-Tuning Large Language Models Using QLoRA
Malaysia - Fine-Tuning Large Language Models Using QLoRA
New Zealand - Fine-Tuning Large Language Models Using QLoRA
Philippines - Fine-Tuning Large Language Models Using QLoRA
Singapore - Fine-Tuning Large Language Models Using QLoRA
Thailand - Fine-Tuning Large Language Models Using QLoRA
Vietnam - Fine-Tuning Large Language Models Using QLoRA
India - Fine-Tuning Large Language Models Using QLoRA
Argentina - Fine-Tuning Large Language Models Using QLoRA
Chile - Fine-Tuning Large Language Models Using QLoRA
Costa Rica - Fine-Tuning Large Language Models Using QLoRA
Ecuador - Fine-Tuning Large Language Models Using QLoRA
Guatemala - Fine-Tuning Large Language Models Using QLoRA
Colombia - Fine-Tuning Large Language Models Using QLoRA
México - Fine-Tuning Large Language Models Using QLoRA
Panama - Fine-Tuning Large Language Models Using QLoRA
Peru - Fine-Tuning Large Language Models Using QLoRA
Uruguay - Fine-Tuning Large Language Models Using QLoRA
Venezuela - Fine-Tuning Large Language Models Using QLoRA
Polska - Fine-Tuning Large Language Models Using QLoRA
United Kingdom - Fine-Tuning Large Language Models Using QLoRA
South Korea - Fine-Tuning Large Language Models Using QLoRA
Pakistan - Fine-Tuning Large Language Models Using QLoRA
Sri Lanka - Fine-Tuning Large Language Models Using QLoRA
Bulgaria - Fine-Tuning Large Language Models Using QLoRA
Bolivia - Fine-Tuning Large Language Models Using QLoRA
Indonesia - Fine-Tuning Large Language Models Using QLoRA
Kazakhstan - Fine-Tuning Large Language Models Using QLoRA
Moldova - Fine-Tuning Large Language Models Using QLoRA
Morocco - Fine-Tuning Large Language Models Using QLoRA
Tunisia - Fine-Tuning Large Language Models Using QLoRA
Kuwait - Fine-Tuning Large Language Models Using QLoRA
Oman - Fine-Tuning Large Language Models Using QLoRA
Slovakia - Fine-Tuning Large Language Models Using QLoRA
Kenya - Fine-Tuning Large Language Models Using QLoRA
Nigeria - Fine-Tuning Large Language Models Using QLoRA
Botswana - Fine-Tuning Large Language Models Using QLoRA
Slovenia - Fine-Tuning Large Language Models Using QLoRA
Croatia - Fine-Tuning Large Language Models Using QLoRA
Serbia - Fine-Tuning Large Language Models Using QLoRA
Bhutan - Fine-Tuning Large Language Models Using QLoRA