- An understanding of AI and machine learning concepts
- Experience with TensorFlow
- Basic programming skills (Python recommended)
Audience
- Developers
- Data scientists
- AI practitioners
TensorFlow Lite is a lightweight version of TensorFlow designed for mobile and embedded devices. Edge AI with TensorFlow Lite focuses on utilizing TensorFlow Lite for developing and deploying Edge AI models. This course covers the tools and techniques specific to TensorFlow Lite, providing practical knowledge for building efficient AI models for edge devices.
This instructor-led, live training (online or onsite) is aimed at intermediate-level developers, data scientists, and AI practitioners who wish to leverage TensorFlow Lite for Edge AI applications.
By the end of this training, participants will be able to:
- Understand the fundamentals of TensorFlow Lite and its role in Edge AI.
- Develop and optimize AI models using TensorFlow Lite.
- Deploy TensorFlow Lite models on various edge devices.
- Utilize tools and techniques for model conversion and optimization.
- Implement practical Edge AI applications using TensorFlow Lite.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Introduction to TensorFlow Lite
- Overview of TensorFlow Lite and its architecture
- Comparison with TensorFlow and other edge AI frameworks
- Benefits and challenges of using TensorFlow Lite for Edge AI
- Case studies of TensorFlow Lite in Edge AI applications
Setting Up the TensorFlow Lite Environment
- Installing TensorFlow Lite and its dependencies
- Configuring the development environment
- Introduction to TensorFlow Lite tools and libraries
- Hands-on exercises for environment setup
Developing AI Models with TensorFlow Lite
- Designing and training AI models for edge deployment
- Converting TensorFlow models to TensorFlow Lite format
- Optimizing models for performance and efficiency
- Hands-on exercises for model development and conversion
Deploying TensorFlow Lite Models
- Deploying models on various edge devices (e.g., smartphones, microcontrollers)
- Running inferences on edge devices
- Troubleshooting deployment issues
- Hands-on exercises for model deployment
Tools and Techniques for Model Optimization
- Quantization and its benefits
- Pruning and model compression techniques
- Utilizing TensorFlow Lite's optimization tools
- Hands-on exercises for model optimization
Building Practical Edge AI Applications
- Developing real-world Edge AI applications using TensorFlow Lite
- Integrating TensorFlow Lite models with other systems and applications
- Case studies of successful Edge AI projects
- Hands-on project for building a practical Edge AI application
Summary and Next Steps
United Arab Emirates - Edge AI with TensorFlow Lite
Qatar - Edge AI with TensorFlow Lite
Egypt - Edge AI with TensorFlow Lite
Saudi Arabia - Edge AI with TensorFlow Lite
South Africa - Edge AI with TensorFlow Lite
Brasil - Edge AI with TensorFlow Lite
Canada - Edge AI with TensorFlow Lite
中国 - Edge AI with TensorFlow Lite
香港 - Edge AI with TensorFlow Lite
澳門 - Edge AI with TensorFlow Lite
台灣 - Edge AI with TensorFlow Lite
USA - Edge AI with TensorFlow Lite
Österreich - Edge AI with TensorFlow Lite
Schweiz - Edge AI with TensorFlow Lite
Deutschland - Edge AI with TensorFlow Lite
Czech Republic - Edge AI with TensorFlow Lite
Denmark - Edge AI with TensorFlow Lite
Estonia - Edge AI with TensorFlow Lite
Finland - Edge AI with TensorFlow Lite
Greece - Edge AI with TensorFlow Lite
Magyarország - Edge AI with TensorFlow Lite
Ireland - Edge AI with TensorFlow Lite
Luxembourg - Edge AI with TensorFlow Lite
Latvia - Edge AI with TensorFlow Lite
España - Edge AI with TensorFlow Lite
Italia - Edge AI with TensorFlow Lite
Lithuania - Edge AI with TensorFlow Lite
Nederland - Edge AI with TensorFlow Lite
Norway - Edge AI with TensorFlow Lite
Portugal - Edge AI with TensorFlow Lite
România - Edge AI with TensorFlow Lite
Sverige - Edge AI with TensorFlow Lite
Türkiye - Edge AI with TensorFlow Lite
Malta - Edge AI with TensorFlow Lite
Belgique - Edge AI with TensorFlow Lite
France - Edge AI with TensorFlow Lite
日本 - Edge AI with TensorFlow Lite
Australia - Edge AI with TensorFlow Lite
Malaysia - Edge AI with TensorFlow Lite
New Zealand - Edge AI with TensorFlow Lite
Philippines - Edge AI with TensorFlow Lite
Singapore - Edge AI with TensorFlow Lite
Thailand - Edge AI with TensorFlow Lite
Vietnam - Edge AI with TensorFlow Lite
India - Edge AI with TensorFlow Lite
Argentina - Edge AI with TensorFlow Lite
Chile - Edge AI with TensorFlow Lite
Costa Rica - Edge AI with TensorFlow Lite
Ecuador - Edge AI with TensorFlow Lite
Guatemala - Edge AI with TensorFlow Lite
Colombia - Edge AI with TensorFlow Lite
México - Edge AI with TensorFlow Lite
Panama - Edge AI with TensorFlow Lite
Peru - Edge AI with TensorFlow Lite
Uruguay - Edge AI with TensorFlow Lite
Venezuela - Edge AI with TensorFlow Lite
Polska - Edge AI with TensorFlow Lite
United Kingdom - Edge AI with TensorFlow Lite
South Korea - Edge AI with TensorFlow Lite
Pakistan - Edge AI with TensorFlow Lite
Sri Lanka - Edge AI with TensorFlow Lite
Bulgaria - Edge AI with TensorFlow Lite
Bolivia - Edge AI with TensorFlow Lite
Indonesia - Edge AI with TensorFlow Lite
Kazakhstan - Edge AI with TensorFlow Lite
Moldova - Edge AI with TensorFlow Lite
Morocco - Edge AI with TensorFlow Lite
Tunisia - Edge AI with TensorFlow Lite
Kuwait - Edge AI with TensorFlow Lite
Oman - Edge AI with TensorFlow Lite
Slovakia - Edge AI with TensorFlow Lite
Kenya - Edge AI with TensorFlow Lite
Nigeria - Edge AI with TensorFlow Lite
Botswana - Edge AI with TensorFlow Lite
Slovenia - Edge AI with TensorFlow Lite
Croatia - Edge AI with TensorFlow Lite
Serbia - Edge AI with TensorFlow Lite
Bhutan - Edge AI with TensorFlow Lite