Course Code: cannedgeai
Duration: 14 hours
Prerequisites:
  • Experience with AI model development or deployment workflows
  • Basic knowledge of embedded systems, Linux, and Python
  • Familiarity with deep learning frameworks such as TensorFlow or PyTorch

Audience

  • IoT solution developers
  • Embedded AI engineers
  • Edge system integrators and AI deployment specialists
Overview:

Huawei's Ascend CANN toolkit enables powerful AI inference on edge devices such as the Ascend 310. CANN provides essential tools for compiling, optimizing, and deploying models where compute and memory are constrained.

This instructor-led, live training (online or onsite) is aimed at intermediate-level AI developers and integrators who wish to deploy and optimize models on Ascend edge devices using the CANN toolchain.

By the end of this training, participants will be able to:

  • Prepare and convert AI models for Ascend 310 using CANN tools.
  • Build lightweight inference pipelines using MindSpore Lite and AscendCL.
  • Optimize model performance for limited compute and memory environments.
  • Deploy and monitor AI applications in real-world edge use cases.

Format of the Course

  • Interactive lecture and demonstration.
  • Hands-on lab work with edge-specific models and scenarios.
  • Live deployment examples on virtual or physical edge hardware.

Course Customization Options

  • To request a customized training for this course, please contact us to arrange.
Course Outline:

Introduction to Edge AI and Ascend 310

  • Overview of Edge AI: trends, constraints, and applications
  • Huawei Ascend 310 chip architecture and supported toolchain
  • Positioning CANN within the edge AI deployment stack

Model Preparation and Conversion

  • Exporting trained models from TensorFlow, PyTorch, and MindSpore
  • Using ATC to convert models to OM format for Ascend devices
  • Handling unsupported ops and lightweight conversion strategies

Developing Inference Pipelines with AscendCL

  • Using the AscendCL API to run OM models on Ascend 310
  • Input/output preprocessing, memory handling, and device control
  • Deploying within embedded containers or lightweight runtime environments

Optimization for Edge Constraints

  • Reducing model size, precision tuning (FP16, INT8)
  • Using the CANN profiler to identify bottlenecks
  • Managing memory layout and data streaming for performance

Deploying with MindSpore Lite

  • Using MindSpore Lite runtime for mobile and embedded targets
  • Comparing MindSpore Lite with raw AscendCL pipeline
  • Packaging inference models for device-specific deployment

Edge Deployment Scenarios and Case Studies

  • Case study: smart camera with object detection model on Ascend 310
  • Case study: real-time classification in an IoT sensor hub
  • Monitoring and updating deployed models at the edge

Summary and Next Steps

Sites Published:

United Arab Emirates - CANN for Edge AI Deployment

Qatar - CANN for Edge AI Deployment

Egypt - CANN for Edge AI Deployment

Saudi Arabia - CANN for Edge AI Deployment

South Africa - CANN for Edge AI Deployment

Brasil - CANN for Edge AI Deployment

Canada - CANN for Edge AI Deployment

中国 - CANN for Edge AI Deployment

香港 - CANN for Edge AI Deployment

澳門 - CANN for Edge AI Deployment

台灣 - CANN for Edge AI Deployment

USA - CANN for Edge AI Deployment

Österreich - CANN for Edge AI Deployment

Schweiz - CANN for Edge AI Deployment

Deutschland - CANN for Edge AI Deployment

Czech Republic - CANN for Edge AI Deployment

Denmark - CANN for Edge AI Deployment

Estonia - CANN for Edge AI Deployment

Finland - CANN for Edge AI Deployment

Greece - CANN for Edge AI Deployment

Magyarország - CANN for Edge AI Deployment

Ireland - CANN for Edge AI Deployment

Luxembourg - CANN for Edge AI Deployment

Latvia - CANN for Edge AI Deployment

España - CANN for Edge AI Deployment

Italia - CANN for Edge AI Deployment

Lithuania - CANN for Edge AI Deployment

Nederland - CANN for Edge AI Deployment

Norway - CANN for Edge AI Deployment

Portugal - CANN for Edge AI Deployment

România - CANN for Edge AI Deployment

Sverige - CANN for Edge AI Deployment

Türkiye - CANN for Edge AI Deployment

Malta - CANN for Edge AI Deployment

Belgique - CANN for Edge AI Deployment

France - CANN for Edge AI Deployment

日本 - CANN for Edge AI Deployment

Australia - CANN for Edge AI Deployment

Malaysia - CANN for Edge AI Deployment

New Zealand - CANN for Edge AI Deployment

Philippines - CANN for Edge AI Deployment

Singapore - CANN for Edge AI Deployment

Thailand - CANN for Edge AI Deployment

Vietnam - CANN for Edge AI Deployment

India - CANN for Edge AI Deployment

Argentina - CANN for Edge AI Deployment

Chile - CANN for Edge AI Deployment

Costa Rica - CANN for Edge AI Deployment

Ecuador - CANN for Edge AI Deployment

Guatemala - CANN for Edge AI Deployment

Colombia - CANN for Edge AI Deployment

México - CANN for Edge AI Deployment

Panama - CANN for Edge AI Deployment

Peru - CANN for Edge AI Deployment

Uruguay - CANN for Edge AI Deployment

Venezuela - CANN for Edge AI Deployment

Polska - CANN for Edge AI Deployment

United Kingdom - CANN for Edge AI Deployment

South Korea - CANN for Edge AI Deployment

Pakistan - CANN for Edge AI Deployment

Sri Lanka - CANN for Edge AI Deployment

Bulgaria - CANN for Edge AI Deployment

Bolivia - CANN for Edge AI Deployment

Indonesia - CANN for Edge AI Deployment

Kazakhstan - CANN for Edge AI Deployment

Moldova - CANN for Edge AI Deployment

Morocco - CANN for Edge AI Deployment

Tunisia - CANN for Edge AI Deployment

Kuwait - CANN for Edge AI Deployment

Oman - CANN for Edge AI Deployment

Slovakia - CANN for Edge AI Deployment

Kenya - CANN for Edge AI Deployment

Nigeria - CANN for Edge AI Deployment

Botswana - CANN for Edge AI Deployment

Slovenia - CANN for Edge AI Deployment

Croatia - CANN for Edge AI Deployment

Serbia - CANN for Edge AI Deployment

Bhutan - CANN for Edge AI Deployment

Nepal - CANN for Edge AI Deployment

Uzbekistan - CANN for Edge AI Deployment