- 具备AI模型开发或部署工作流程的经验
- 具备嵌入式系统、Linux和Python的基本知识
- 熟悉深度学习框架,如TensorFlow或PyTorch
目标学员
- IoT解决方案开发者
- 嵌入式AI工程师
- 边缘系统整合师和AI部署专家
华为的Ascend CANN工具包能够在边缘设备(如Ascend 310)上实现强大的AI推理。CANN提供了在计算和内存受限的环境中编译、优化和部署模型的必要工具。
这项由讲师指导的培训(线上或线下)针对希望使用CANN工具链在Ascend边缘设备上部署和优化模型的中级AI开发者和集成商。
在培训结束时,参与者将能够:
- 使用CANN工具为Ascend 310准备和转换AI模型。
- 使用MindSpore Lite和AscendCL构建轻量级推理管道。
- 在计算和内存有限的环境中优化模型性能。
- 在实际边缘用例中部署和监控AI应用程序。
课程形式
- 互动式讲座和演示。
- 针对边缘特定模型和场景的动手实验。
- 在虚拟或物理边缘硬件上的即时部署示例。
课程定制选项
- 如需为本课程定制培训,请联系我们进行安排。
Edge AI 与 Ascend 310 简介
- Edge AI 概览:趋势、限制与应用
- Huawei Ascend 310 晶片架构与支援的工具链
- 在边缘 AI 部署堆叠中定位 CANN
模型准备与转换
- 从 TensorFlow、PyTorch 和 MindSpore 汇出训练好的模型
- 使用 ATC 将模型转换为 Ascend 装置的 OM 格式
- 处理不支援的操作与轻量级转换策略
使用 AscendCL 开发推理管道
- 使用 AscendCL API 在 Ascend 310 上运行 OM 模型
- 输入/输出预处理、记忆体处理与装置控制
- 在嵌入式容器或轻量级运行环境中部署
针对边缘限制的优化
- 缩减模型大小,精度调校(FP16, INT8)
- 使用 CANN 分析工具识别瓶颈
- 管理记忆体布局与数据流以提升性能
使用 MindSpore Lite 部署
- 使用 MindSpore Lite 运行时针对移动与嵌入式目标
- 比较 MindSpore Lite 与原生 AscendCL 管道
- 打包推理模型以进行装置特定部署
边缘部署场景与案例研究
- 案例研究:在 Ascend 310 上使用物件检测模型的智能相机
- 案例研究:IoT 感测器中心的即时分类
- 监控与更新边缘部署的模型
总结与下一步
United Arab Emirates - CANN for Edge AI Deployment
Qatar - CANN for Edge AI Deployment
Egypt - CANN for Edge AI Deployment
Saudi Arabia - CANN for Edge AI Deployment
South Africa - CANN for Edge AI Deployment
Brasil - CANN for Edge AI Deployment
Canada - CANN for Edge AI Deployment
中国 - CANN for Edge AI Deployment
香港 - CANN for Edge AI Deployment
澳門 - CANN for Edge AI Deployment
台灣 - CANN for Edge AI Deployment
USA - CANN for Edge AI Deployment
Österreich - CANN for Edge AI Deployment
Schweiz - CANN for Edge AI Deployment
Deutschland - CANN for Edge AI Deployment
Czech Republic - CANN for Edge AI Deployment
Denmark - CANN for Edge AI Deployment
Estonia - CANN for Edge AI Deployment
Finland - CANN for Edge AI Deployment
Greece - CANN for Edge AI Deployment
Magyarország - CANN for Edge AI Deployment
Ireland - CANN for Edge AI Deployment
Luxembourg - CANN for Edge AI Deployment
Latvia - CANN for Edge AI Deployment
España - CANN for Edge AI Deployment
Italia - CANN for Edge AI Deployment
Lithuania - CANN for Edge AI Deployment
Nederland - CANN for Edge AI Deployment
Norway - CANN for Edge AI Deployment
Portugal - CANN for Edge AI Deployment
România - CANN for Edge AI Deployment
Sverige - CANN for Edge AI Deployment
Türkiye - CANN for Edge AI Deployment
Malta - CANN for Edge AI Deployment
Belgique - CANN for Edge AI Deployment
France - CANN for Edge AI Deployment
日本 - CANN for Edge AI Deployment
Australia - CANN for Edge AI Deployment
Malaysia - CANN for Edge AI Deployment
New Zealand - CANN for Edge AI Deployment
Philippines - CANN for Edge AI Deployment
Singapore - CANN for Edge AI Deployment
Thailand - CANN for Edge AI Deployment
Vietnam - CANN for Edge AI Deployment
India - CANN for Edge AI Deployment
Argentina - CANN for Edge AI Deployment
Chile - CANN for Edge AI Deployment
Costa Rica - CANN for Edge AI Deployment
Ecuador - CANN for Edge AI Deployment
Guatemala - CANN for Edge AI Deployment
Colombia - CANN for Edge AI Deployment
México - CANN for Edge AI Deployment
Panama - CANN for Edge AI Deployment
Peru - CANN for Edge AI Deployment
Uruguay - CANN for Edge AI Deployment
Venezuela - CANN for Edge AI Deployment
Polska - CANN for Edge AI Deployment
United Kingdom - CANN for Edge AI Deployment
South Korea - CANN for Edge AI Deployment
Pakistan - CANN for Edge AI Deployment
Sri Lanka - CANN for Edge AI Deployment
Bulgaria - CANN for Edge AI Deployment
Bolivia - CANN for Edge AI Deployment
Indonesia - CANN for Edge AI Deployment
Kazakhstan - CANN for Edge AI Deployment
Moldova - CANN for Edge AI Deployment
Morocco - CANN for Edge AI Deployment
Tunisia - CANN for Edge AI Deployment
Kuwait - CANN for Edge AI Deployment
Oman - CANN for Edge AI Deployment
Slovakia - CANN for Edge AI Deployment
Kenya - CANN for Edge AI Deployment
Nigeria - CANN for Edge AI Deployment
Botswana - CANN for Edge AI Deployment
Slovenia - CANN for Edge AI Deployment
Croatia - CANN for Edge AI Deployment
Serbia - CANN for Edge AI Deployment
Bhutan - CANN for Edge AI Deployment