- 具備AI模型開發或部署工作流程的經驗
- 具備嵌入式系統、Linux和Python的基本知識
- 熟悉深度學習框架,如TensorFlow或PyTorch
目標學員
- IoT解決方案開發者
- 嵌入式AI工程師
- 邊緣系統整合師和AI部署專家
華為的Ascend CANN工具包能夠在邊緣設備(如Ascend 310)上實現強大的AI推理。CANN提供了在計算和內存受限的環境中編譯、優化和部署模型的必要工具。
這項由講師指導的培訓(線上或線下)針對希望使用CANN工具鏈在Ascend邊緣設備上部署和優化模型的中級AI開發者和集成商。
在培訓結束時,參與者將能夠:
- 使用CANN工具為Ascend 310準備和轉換AI模型。
- 使用MindSpore Lite和AscendCL構建輕量級推理管道。
- 在計算和內存有限的環境中優化模型性能。
- 在實際邊緣用例中部署和監控AI應用程序。
課程形式
- 互動式講座和演示。
- 針對邊緣特定模型和場景的動手實驗。
- 在虛擬或物理邊緣硬件上的即時部署示例。
課程定制選項
- 如需為本課程定制培訓,請聯繫我們進行安排。
Edge AI 與 Ascend 310 簡介
- Edge AI 概覽:趨勢、限制與應用
- Huawei Ascend 310 晶片架構與支援的工具鏈
- 在邊緣 AI 部署堆疊中定位 CANN
模型準備與轉換
- 從 TensorFlow、PyTorch 和 MindSpore 匯出訓練好的模型
- 使用 ATC 將模型轉換為 Ascend 裝置的 OM 格式
- 處理不支援的操作與輕量級轉換策略
使用 AscendCL 開發推理管道
- 使用 AscendCL API 在 Ascend 310 上運行 OM 模型
- 輸入/輸出預處理、記憶體處理與裝置控制
- 在嵌入式容器或輕量級運行環境中部署
針對邊緣限制的優化
- 縮減模型大小,精度調校(FP16, INT8)
- 使用 CANN 分析工具識別瓶頸
- 管理記憶體布局與數據流以提升性能
使用 MindSpore Lite 部署
- 使用 MindSpore Lite 運行時針對移動與嵌入式目標
- 比較 MindSpore Lite 與原生 AscendCL 管道
- 打包推理模型以進行裝置特定部署
邊緣部署場景與案例研究
- 案例研究:在 Ascend 310 上使用物件檢測模型的智能相機
- 案例研究:IoT 感測器中心的即時分類
- 監控與更新邊緣部署的模型
總結與下一步
United Arab Emirates - CANN for Edge AI Deployment
Qatar - CANN for Edge AI Deployment
Egypt - CANN for Edge AI Deployment
Saudi Arabia - CANN for Edge AI Deployment
South Africa - CANN for Edge AI Deployment
Brasil - CANN for Edge AI Deployment
Canada - CANN for Edge AI Deployment
中国 - CANN for Edge AI Deployment
香港 - CANN for Edge AI Deployment
澳門 - CANN for Edge AI Deployment
台灣 - CANN for Edge AI Deployment
USA - CANN for Edge AI Deployment
Österreich - CANN for Edge AI Deployment
Schweiz - CANN for Edge AI Deployment
Deutschland - CANN for Edge AI Deployment
Czech Republic - CANN for Edge AI Deployment
Denmark - CANN for Edge AI Deployment
Estonia - CANN for Edge AI Deployment
Finland - CANN for Edge AI Deployment
Greece - CANN for Edge AI Deployment
Magyarország - CANN for Edge AI Deployment
Ireland - CANN for Edge AI Deployment
Luxembourg - CANN for Edge AI Deployment
Latvia - CANN for Edge AI Deployment
España - CANN for Edge AI Deployment
Italia - CANN for Edge AI Deployment
Lithuania - CANN for Edge AI Deployment
Nederland - CANN for Edge AI Deployment
Norway - CANN for Edge AI Deployment
Portugal - CANN for Edge AI Deployment
România - CANN for Edge AI Deployment
Sverige - CANN for Edge AI Deployment
Türkiye - CANN for Edge AI Deployment
Malta - CANN for Edge AI Deployment
Belgique - CANN for Edge AI Deployment
France - CANN for Edge AI Deployment
日本 - CANN for Edge AI Deployment
Australia - CANN for Edge AI Deployment
Malaysia - CANN for Edge AI Deployment
New Zealand - CANN for Edge AI Deployment
Philippines - CANN for Edge AI Deployment
Singapore - CANN for Edge AI Deployment
Thailand - CANN for Edge AI Deployment
Vietnam - CANN for Edge AI Deployment
India - CANN for Edge AI Deployment
Argentina - CANN for Edge AI Deployment
Chile - CANN for Edge AI Deployment
Costa Rica - CANN for Edge AI Deployment
Ecuador - CANN for Edge AI Deployment
Guatemala - CANN for Edge AI Deployment
Colombia - CANN for Edge AI Deployment
México - CANN for Edge AI Deployment
Panama - CANN for Edge AI Deployment
Peru - CANN for Edge AI Deployment
Uruguay - CANN for Edge AI Deployment
Venezuela - CANN for Edge AI Deployment
Polska - CANN for Edge AI Deployment
United Kingdom - CANN for Edge AI Deployment
South Korea - CANN for Edge AI Deployment
Pakistan - CANN for Edge AI Deployment
Sri Lanka - CANN for Edge AI Deployment
Bulgaria - CANN for Edge AI Deployment
Bolivia - CANN for Edge AI Deployment
Indonesia - CANN for Edge AI Deployment
Kazakhstan - CANN for Edge AI Deployment
Moldova - CANN for Edge AI Deployment
Morocco - CANN for Edge AI Deployment
Tunisia - CANN for Edge AI Deployment
Kuwait - CANN for Edge AI Deployment
Oman - CANN for Edge AI Deployment
Slovakia - CANN for Edge AI Deployment
Kenya - CANN for Edge AI Deployment
Nigeria - CANN for Edge AI Deployment
Botswana - CANN for Edge AI Deployment
Slovenia - CANN for Edge AI Deployment
Croatia - CANN for Edge AI Deployment
Serbia - CANN for Edge AI Deployment
Bhutan - CANN for Edge AI Deployment