- Experience with AI model development or deployment workflows
- Basic knowledge of embedded systems, Linux, and Python
- Familiarity with deep learning frameworks such as TensorFlow or PyTorch
Audience
- IoT solution developers
- Embedded AI engineers
- Edge system integrators and AI deployment specialists
Huawei's Ascend CANN toolkit enables powerful AI inference on edge devices such as the Ascend 310. CANN provides essential tools for compiling, optimizing, and deploying models where compute and memory are constrained.
This instructor-led, live training (online or onsite) is aimed at intermediate-level AI developers and integrators who wish to deploy and optimize models on Ascend edge devices using the CANN toolchain.
By the end of this training, participants will be able to:
- Prepare and convert AI models for Ascend 310 using CANN tools.
- Build lightweight inference pipelines using MindSpore Lite and AscendCL.
- Optimize model performance for limited compute and memory environments.
- Deploy and monitor AI applications in real-world edge use cases.
Format of the Course
- Interactive lecture and demonstration.
- Hands-on lab work with edge-specific models and scenarios.
- Live deployment examples on virtual or physical edge hardware.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Introduction to Edge AI and Ascend 310
- Overview of Edge AI: trends, constraints, and applications
- Huawei Ascend 310 chip architecture and supported toolchain
- Positioning CANN within the edge AI deployment stack
Model Preparation and Conversion
- Exporting trained models from TensorFlow, PyTorch, and MindSpore
- Using ATC to convert models to OM format for Ascend devices
- Handling unsupported ops and lightweight conversion strategies
Developing Inference Pipelines with AscendCL
- Using the AscendCL API to run OM models on Ascend 310
- Input/output preprocessing, memory handling, and device control
- Deploying within embedded containers or lightweight runtime environments
Optimization for Edge Constraints
- Reducing model size, precision tuning (FP16, INT8)
- Using the CANN profiler to identify bottlenecks
- Managing memory layout and data streaming for performance
Deploying with MindSpore Lite
- Using MindSpore Lite runtime for mobile and embedded targets
- Comparing MindSpore Lite with raw AscendCL pipeline
- Packaging inference models for device-specific deployment
Edge Deployment Scenarios and Case Studies
- Case study: smart camera with object detection model on Ascend 310
- Case study: real-time classification in an IoT sensor hub
- Monitoring and updating deployed models at the edge
Summary and Next Steps
United Arab Emirates - CANN for Edge AI Deployment
Qatar - CANN for Edge AI Deployment
Egypt - CANN for Edge AI Deployment
Saudi Arabia - CANN for Edge AI Deployment
South Africa - CANN for Edge AI Deployment
Brasil - CANN for Edge AI Deployment
Canada - CANN for Edge AI Deployment
中国 - CANN for Edge AI Deployment
香港 - CANN for Edge AI Deployment
澳門 - CANN for Edge AI Deployment
台灣 - CANN for Edge AI Deployment
USA - CANN for Edge AI Deployment
Österreich - CANN for Edge AI Deployment
Schweiz - CANN for Edge AI Deployment
Deutschland - CANN for Edge AI Deployment
Czech Republic - CANN for Edge AI Deployment
Denmark - CANN for Edge AI Deployment
Estonia - CANN for Edge AI Deployment
Finland - CANN for Edge AI Deployment
Greece - CANN for Edge AI Deployment
Magyarország - CANN for Edge AI Deployment
Ireland - CANN for Edge AI Deployment
Luxembourg - CANN for Edge AI Deployment
Latvia - CANN for Edge AI Deployment
España - CANN for Edge AI Deployment
Italia - CANN for Edge AI Deployment
Lithuania - CANN for Edge AI Deployment
Nederland - CANN for Edge AI Deployment
Norway - CANN for Edge AI Deployment
Portugal - CANN for Edge AI Deployment
România - CANN for Edge AI Deployment
Sverige - CANN for Edge AI Deployment
Türkiye - CANN for Edge AI Deployment
Malta - CANN for Edge AI Deployment
Belgique - CANN for Edge AI Deployment
France - CANN for Edge AI Deployment
日本 - CANN for Edge AI Deployment
Australia - CANN for Edge AI Deployment
Malaysia - CANN for Edge AI Deployment
New Zealand - CANN for Edge AI Deployment
Philippines - CANN for Edge AI Deployment
Singapore - CANN for Edge AI Deployment
Thailand - CANN for Edge AI Deployment
Vietnam - CANN for Edge AI Deployment
India - CANN for Edge AI Deployment
Argentina - CANN for Edge AI Deployment
Chile - CANN for Edge AI Deployment
Costa Rica - CANN for Edge AI Deployment
Ecuador - CANN for Edge AI Deployment
Guatemala - CANN for Edge AI Deployment
Colombia - CANN for Edge AI Deployment
México - CANN for Edge AI Deployment
Panama - CANN for Edge AI Deployment
Peru - CANN for Edge AI Deployment
Uruguay - CANN for Edge AI Deployment
Venezuela - CANN for Edge AI Deployment
Polska - CANN for Edge AI Deployment
United Kingdom - CANN for Edge AI Deployment
South Korea - CANN for Edge AI Deployment
Pakistan - CANN for Edge AI Deployment
Sri Lanka - CANN for Edge AI Deployment
Bulgaria - CANN for Edge AI Deployment
Bolivia - CANN for Edge AI Deployment
Indonesia - CANN for Edge AI Deployment
Kazakhstan - CANN for Edge AI Deployment
Moldova - CANN for Edge AI Deployment
Morocco - CANN for Edge AI Deployment
Tunisia - CANN for Edge AI Deployment
Kuwait - CANN for Edge AI Deployment
Oman - CANN for Edge AI Deployment
Slovakia - CANN for Edge AI Deployment
Kenya - CANN for Edge AI Deployment
Nigeria - CANN for Edge AI Deployment
Botswana - CANN for Edge AI Deployment
Slovenia - CANN for Edge AI Deployment
Croatia - CANN for Edge AI Deployment
Serbia - CANN for Edge AI Deployment
Bhutan - CANN for Edge AI Deployment